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ABSTRACT

This thesis presents results on the evaluation of several diversity combining techniques

that are suggested for frequency-hop (FH) communications with partial-band interference and

rfading. The analysis covers systems with M-ary orthogonal signaling and noncoherent demo-

dulation. The partial-band interference is modeled as a Gaussian process. although some of the

results also apply to general (non-Gaussian) partial-band interference. The performance meas-

ures we use to evaluate the diversity combining techniques are the narrowband interference

rejection capability and the signal to noise ratio requirement over the entire range of interfer-

ence duty factors. We evaluate the exact Probability of error for each of the diversity combin-

ing techniques studied.

The performance of the optimum combining technique for receivers with perfect side

'' information is established. It is shown that for receivers with perfect side information, the sys-

tem performance does not change significantly with the choice of the diversity combining tech-

nique. However, the same schemes that work well in receivers with perfect side information

.- perform poorly in receivers without side information. The goal of this work is to find and

" analyze diversity combining schemes that do not use side information, but that perform nearly

*~a. well as the optimum combining technique.

Clipped linear combining is proposed as a diversity combining technique for receivers
without side information. The numerical results demonstrate that clipped linear combining can

* perform nearly as well as the optimum combining technique in terms of both narrowband
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interference rejection and signal to noise ratio requirement. However, knowledge of the signal

S output voltage is required to set the clipping level. We analyze two alternative diversity com-

bining techniques that do not have this requirement. These diversity combining schemes use

ratio statistics in a ratio threshold test to determine the quality of each diversity reception. It

-, is shown that the ratio threshold test with diversity combining provides good narrow band

interference rejection. but at the expense of an increased signal to noise ratio requirement near

full-band interference. Although the ratio threshold test with diversity combining does not

achieve the optimum performance. it is an effective, as well as practical, scheme for use in FH

communication systems with partial-band interference and fading.
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CHAPT7ER I

INTRODUCTION

Diversity transmission is often employed to provide reliable communication in the pres-

ence of fading or partial-band interference. We consider a system in which the diversity recep-

tions are first demodulated by a noncoherent matched filter followed by an envelope detector:

this is equivalent to the square root 6f the sum of the squares of the outputs of an inphase-

quadrature (I-Q) square-law demodulator. The envelope detector outputs corresponding to the

- diversity receptions of a given data symbol are then combined in some way to form the deci-

sion statistics for the receiver. Equivalent block diagrams for the demodulator and diversity

r" combiner are shown in Figures 1.1 and 1.2. Except for I-Q magnitude-law combining, all of the

diversity combining techniques considered in this thesis fit these models.

The performance of the diversity transmission system depends on the way in which the

diversity receptions are combined. The purpose of this research is to investigate various diver-

.. sity combining techniques for applications to noncoherent frequency-hop (FH) communication

systems with partial-band interference and fading.

Some of the methods for combining the diversity receptions are only useful when side

information is available at the receiver. By side information, we mean information concerning

the presence or absence of interference on a given diversity reception. Other studies have

shown that when side information is available, coding and diversity may be used to virtually

eliminate the effects of narrowband interference. Many codes have been studied [1]-[51. but

r" Reed-Solomon coding is particulariy attractive for this application.

Square-law combining has been studied extensively for use in noncoherent systems. This

is in part because it is the optimum rnncoherent combining technique for Rayleigh fading [6]-

[7]. and in part because its analysis is easier than most other combining methods. However.

square-law combining is not optimum for other types of fading or for channels with partial-

1*
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Demodulator

_______Envelope Diversity-
- Fiter Detector Combiner

Figure 1 .1. Block diagram of one branch of a receiver employing diversity combining

Demodulator

iXwv 1.2. Equi~.alent block diagram of one branch of a receiver employing diversity com-
bining
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- band interference. In Chapter 2. we study the optimum noncoherent combining technique for

Gaussian partial-band interference, as well as four suboptimal combining schemes includinga
"- square-law combining. Square-law combining, linear combining, square-root combining, I-Q

-" magnitude-law combining, and optimum combining are compared for receivers with side infor-

mation.

Side information is not always 4vailable at the receiver. The requirement to extract side

- information -increases the receiver complexity, and there is always concern about the reliability

of the side information. Some diversity techniques that work well with side information per-

form poorly when there is no side information. Because of these considerations, diversity com-

bining techniques that do not require side information from external sources are particularly

F" attractive. In one such diversity combining scheme. called dipped linear combining, the

-. envelope detector outputs of each diversity reception are clipped before they are combined. The

role of the clipper is to constrain the effects of strong narrowband interference. Clipped linear

I combining is analyzed in Chapter 3.

Although clipped linear combining is very effective against partial-band interference,

there is a practical disadvantage to this diversity combining scheme. The clipping level depends

on the signal output voltage i. e.. the envelope detector output voltage due to signal only).

This signal output voltage may be difficult to measure in practice.

It is desirable to employ diversity combining techniques that do not depend on the

receti.ed signal power. One such diversity combining technique uses Viterbi's ratio threshold

."es: In the ratio threshold test. the ratio statistic for a given diversity reception is the

:,a* ,o A "ne ,argest en, elope detector output to the second largest envelope detector output. We

,:is& Js~ e.eral di,'ersit v combining techniques that use the ratio threshold test.

In -.he s-.stem that uses the ratio threshold test with linear combining, a diversity recep-

.;cn) :s re'ected if its racio statistic is less than a prescribed threshold. If the ratio is greater

than the threshold, the diversity reception is accepted. If at least one diversity reception is

........................ ..............................................
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accepted. then only the accepted diversity receptions are combined. If all diversity receptions

are rejected. then all of them are combined and a hard decision is made. We analyze the ratio

threshold test with linear combining for systems with binary orthogonal signaling.

An alternative scheme is to make a hard decision on each accepted diversity reception.

This is followed by majority logic decod ing of all accepted diversity receptions [10]. If a tie

* occurs among the accepted diversity receptions, or if all diversity receptions are rejected. a ran-

* dom guess is made.

Improvement is possible for the ratio threshold test with either linear combining or

* majority logic decoding by employing other strategies if all the diversity receptions are rejected

or if a tie occurs. In these situations. the ratio statistics for the diversity receptions may be

used again. For both linear combining and majority logic decoding. we examine the strategy of

basing, the decision on the diversity reception with the largest ratio for the situation in which

all diversity receptions are rejected.

The ratio threshold test is also considered for use in systems with M -ary orthogonal sig-

* naling. A hard decision is made on each diversity reception. The ratio threshold test is

employed to determine which diversity receptions to include in the decision process. Then, the

symbol with the most decisions in its favor, out of the accepted diversity receptions. is chosen.

These diversity combining techniques based on the ratio statistic are examined in Chapter 4.

where they are compared to clipped linear combining and optimum combining.

For partial-band interference, the interference duty factor is the fraction of the frequency

band of -,he Fl- system that is occupied by the interference. Similarly. the interference duty

factor represents the fraction of the time that partial-time interference is present in a system

* which uses time diversity. That is. although we give results for FH systems with partial-band

interference, the results also apply to systems employing time diversity, achieved by interleav-

ing, with partial-time interference.



Much of the work done on the analysis of FH systems with partial-band interference has

dealt with the the worst-case system performance (31-(5]. (8]-[14]: intentional partial-band

* jamming is the main concern in these studies. The worst-case duty factor for the interference

and the corresponding system performance depend on the diversity level. the signal to noise

ratio, the code used, and the specific diversity combining technique employed by the system.

The analysis of the worst-case situation is rather difficult. In an earlier study [41. the worst-

case interference duty factor was approximated by the interference duty factor that maximize

- the Chernoff bound for the probability of error. This approximation of the worst-case int~erfer-

* ence has been used in other works, such as (5] and (121. However, it has been shown that the

Chernoff bound is not tight [2]. [13]. and that the exact value for the worst-case partial-band

r interference duty factor is not the same as the Chernoff bound value [14].

In this research, we examine how well the diversity combining system performs as a

function of the duty factor of the partial-band interference. This type of analysis is motivated

U in part by the fact that partial-band interference is not always due to hostile jamming. For

example. narrowband transmitters that operate in the same frequency band as the ElI system

are a source of partial-band interference. Multiple access interference is another source of

*partial-band interference 1i]. We are interested in combining techniques that mitigate the effects

of unintentional jamming and that force a hostile jammer to adopt expensive strategies in order

to be effective.

There are two primary system performance measures that we use throughout this thesis.

For each value of the partial-band interference duty factor, we compute the signal to noise

ratio required to achieve a given error probability. The maximum signal to noise ratio required

over the range of duty factors is one system performance measure of interest. It is desirable to

minimize this maximum signal to noise ratio: at the same time, it is desirable for the maximum

r to occur at as large an interference duty factor as possible. We would like the worst-case duty

factor to be unity without significantly increasing the maximum required signal to noise ratio
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(I. [2]. In practice. full-band jamming of a wideband spread-spectrum communications system

is more expensive than narrowband jamming.

We are also interested in the system's narrowband interference rejection capability. This

is measured in terms of the largest number, such that a given error probability can be achieved

in the presence of interference for any duty factor less than that number. A system has good

narrowband interference rejection if this number is large.

In addition to partial-band interference, the communications channel may exhibit fading.

An analysis of noncoherent communications in the presence of nonselective Rician and Rayleigh

fading and partial-band interference was given in [1]. For the system with diversity, side

information was assumed to be available and square-law combining was used. In Rayleigh fad-

- ing. this is the optimum scheme to use. Chapter 5 is devoted to an extension of the results of

[1]. We examine the performance of the diversity combining schemes proposed in Chapter 4 for

channels with partial-band interference and nonselective fading. The purpose of this study is

to demonstrate how well these diversity combining schemes perform in a fading environment.

.- * .*.-.

. . . . . . . . . . . . . . . . . . . . . . . .
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CHAPTER 2

DIVERSITY COMBDING FOR RECEIVERS WTH SIDE INFORMATION

In this chapter. we discuss diversity combining techniques for systems in which perfect

side information is available at the receiver. I-Q square-law combining, which has been studied

" for this application in [1]-[2]. [111-[12], is compared with linear combining and square-root

*. combining. We also introduce the suboptimum I-Q magnitude-law receiver and describe I-Q

magnitude-law combining. One motivation for these alternative diversity combining schemes is

their superiority in the presence of a one-dimensional tone jammer. Consider a system which

employs M -ary frequency-shift keying (FSK). A one-dimensional tone jammer affects only

r one of the M -ary tones on a given diversity reception. The jammer is present on a given diver-

* sity reception with probability p. The jammer power is fixed, so that when the jammer is

present, the power applied is the average jammer power divided by p. In square-law combin-

3ing, the decision statistics are the sums of squares. In linear combining, the decision statistics

are the sums of linear terms. Given that the jammer power applied to a diversity reception

overwhelms the signal power. especially if p is small, a jammed diversity reception will be

given more emphasis in a sum of squares than in a sum of linear terms. Thus, it seems. intui-

. .tively at least, that linear combining may be better than square-law combining in a jamming

* 'environment.

* . Another motivation for employing these alternative diversity combining schemes is that

- for certain applications linear combining and I-Q magnitude-law combining are easier to imple-

r" ment than square-law combining. Unfortunately, they are more difficult to analyze than

square-law combining.

None of the combining schemes discussed so far is the optimum combining scheme for

r Gaussian partial-band interference. In this chapter, we include a description of the combining

scheme that is optimum for a system with perfect side information. The performance of the

.I

,°~
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suboptimum combining schemes are compared with the performance of the optimum combining

scheme. .

2.1 System Model

We consider a noncoherent system with M -ary orthogonal signaling and diversity L.

The interference is additive Gaussian noise and is present on a given symbol with probability p.

With probability 1-P. the symbol is received with no interference. This model is based on the

assumption that the quiescent noise level due to thermal noise or other wideband noise sources

is negligible. The partial-band interference is the primary source of noise. In a frequency-hop

system. p represents the fractional bandwidth occupied by the partial-band interference. The

noise power spectral density is lp-1 N, across that fraction of the band. Thus, the average

.- power spectral density is IN I . If pffl, the channel is the additive white Gaussian noise
2

(AWGN) channel with two-sided power spectral density IN,.

2

When diversity and side information are employed. the receiver can ignore the diversity

receptions that have interference, and it can extract the data from the noise-free diversity

receptions. If all the diversity receptions of a symbol are noisy. they are combined and a deci-

sion is made on which M -ary symbol was sent. For this model, symbol errors are possible only

when all diversity receptions of the given symbol have interference. The interference is present

on all of the diversity receptions with probability pz

Given that all diversity receptions have interference present, the diversity combiner in the

receiver takes each demodulator output. processes it in some way. and then adds the processed

diversity receptions. For example. in square-law combining and in linear combining, the demo-

dulator consists of a filter followed by an envelope detector. In square-law combining, the

demodulated diversity receptions are squared before they are added. In linear combining, the

demodulated diversity receptions are added directly. Block diagrams for a receiver with

square-law combining and for a receiver with linear combiner are shown in Figures 2.1 and 2.2.

.r .- . .. .

."6 1.. .............'... . .%.., . .-... hJ m mli =h
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Given that the symbol 0 is sent, the symbol error probability for the diversity system with

perfect side information can be written as [2]

For each k. the densities f k ( )(x ) are the density functions of the outputs of the diversity

combiner. These densities are the L -)-fold self-convolution of 4. ()(x ). which are the den-

sity functions for the processed diversity receptions before the combiner takes their sum. (An

M r-fold self-convolution of f is f if r--0. it is f* if r--1. it is f*f*f if r--2. etc.) These

density functions depend on the combining technique employed in the system.

For a given symbol error probability p.. the parameter p is such that for all p less than

F p . p, can be achieved regardless of the type of interference [1]-[2]. The parameter p does not

depend on the statistical distribution or the power level of the interference. It is desirable to

have p" as close to unity as possible. indicating that the system can eliminate detrimental

effects of narrowband interference. For a system with side information but no coding, the

lLvalue of p for diversity L and symbol error probability p5 is p 11 All the diversity combin-

ing schemes studied in this chapter have p =p,

2.2 A Description of Several Diversity Combining Techniques

We compare square-law combining, linear combining, square-root combining, and I-Q

magnitude-law combining employed in diversity systems in the presence of Gaussian partial-

band interference with duty factor p. If interference is present on all L diversity receptions of

a transmitted symbol. then all L diversity receptions are combined. A decision is made based

on the statistic that is the combination of the diversity receptions.

In a system employing square-law combining, the squares of the outputs of the envelope

detectors are added [2]. This is equivalent to adding the outputs of an I-Q square-law detector.

Figure 2.1 shows a block diagram of a receiver using square-law combining. Given that the

symbol 0 :s sent, the decision statistics are

.' ... ,.",-..-... ...... "..... . ... ." %.•.... . %. • % -_. . -,%%
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2 .2

ZO -- (X0. +V .+1 (22a)

L

Z. = Z"X',I+Y4. 2 1 Q<M-1 (2.2b)

where

r.,

v = ,/2(E/N, )p/L

-,/2 log2M (Eb IN, )pIL. (2.3)

The quantity E is the symbol energy, Eb is the bit energy. and E IL and Eb IL are the symbol

energy and bit energy per diversity transmission. {Xk,:.Yl.: Ok <M-1. 1 L} are

mutually independent zero-mean, unit-variance Gaussian random variables. The densities for

Z , 0-<k K<M-1 are well-known and are given by [15]

o ~L -1 '"

-(x - 2)exp( -x +v 2L)I () _ ). x >0. (2.4a)
S2 vL 2

* and

-.. L~ -1 ,.

Y) Y exp(-Y), y >0. 14k K, M-1. (2.4b)
2 (L -1)! 2

where I () is the v-th order modified Bessel function.

For linear combining, the decision statistics are the sums of the outputs of the envelope

detectors. A block diagram of a receiver with linear combining is shown in Figure 2.2. Given

the symbol 0 is sent, the decision statistics are

: ~ ~ )2 .. :

Z"= . ( + v \A+X (2.5a)
" "2 + 12 1 <k <M-1. (2.5b).

Thus, Z is the sum of L Rician distributed random variables for k =0. and Z. is the sum of L

" Ravleigh distributed random variables for k >0. For L >2. closed form analytical exrressions

for the densities of Z, are not known; they are found by using numerical techniques.

'. . . ,, . . .. .. - -. . . .• , •"- " .-. ,,, "- ."" " A" "" ..d"-l'



+ exp(-(x +, (sin -cos 9))2/4] [Q (A (COS 0+sin 0-x (cos 0+szn 0)+x )] (2.8a)

+ exp[-(x +v (sin @+cos 9)) /4] [Q (-V (cos 0-sin ,)-x )_Q ( -v (cos 0-sin x)+. )]}d O. >, >O.

and

( 'Y) =ye [>-,( y yO. I <k <M-1. (2.Sb)

where Q (.) is the complementary cumulative Gaussian distribution function. The densities for

the statistics in (2.7) are the (L -1)-fold self-convolutions of fk (x ) for each k . and are com-a
puted with numerical techniques.

Consider the probability of error for the I-Q magnitude-law receiver with diversity level

1 in AWGN. This performance is not widely known, so we briefly discuss it here. That is. we

discuss the performance of the system with no diversity and with p=-1. We compute the exact

average probability of error given the densities in (2.8). Also, we compute the worst-case per-

i3 formance for the I-Q magnitude-law receiver which is found by substituting O=ffi for
2

i =0. 1. 2. or 3 in the densities of (2.8). That is, the minimum expected value of Z. in (2.7a)

- occurs at any of these values of 0. In Figures 2.4. 2.5. and 2.6. we compare the probability of

- error of the I-Q square-law receiver to that of the I-Q magnitude-law receiver in AWGN (p=l)

for L = 1. and M =2. 16. and 64. Notice that over the range of signal to noise ratios shown. the

- I-Q magnitude-law receiver performance is not much more than 1 dB worse than the I-Q

square-law receiver performance.

2.3 Optimum Diversity Combining

Consider, once again, diversity levels greater than or equal to 1. The decision statistics for

"- the optimum diversity combining technique of envelope detector outputs in AWGN are known

because of their application in radar detection problems. and they are easily derivable [16]-[191.

[ Given that the symbol 0 is sent. the decision statistics are

- ..- ... .. ... ....-.-.- .-.. -...-... .. .-.-.... ..... •. ................ .....-.......-.-..............-..-.. ,,*...... .... *,.:
. . ."*. . .-t .-a ''e, f~ lrlnl.aa i ii li.. I i..
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L

o= ]llo(v -(Xo +v )2+Yo 2) (2.9a)
1 -1

L

, IIIo(,,Vx,+-Y,) I<k 4M-1. (2.9b)

'- Now consider partial-band interference with duty factors other than p-1. The decision statis-

tics in (2.9) are also the optimum decision statistics for a system with perfect side information

in the presence of Gaussian partial-band interference of any duty factor. This is true. because.

for systems with perfect side information, interference must be present on all diversity recep-

tions in order for the diversity receptions to be combined. The situation in which interference

is present on all diversity receptions corresponding to a given bit is analogous to the situation in

which AWGN with double-sided power spectral density -p N, is present on that bit.

By taking the natural logarithm of the decision statistics in (2.9). we obtain an alternate

form of the decision statistics. namely

Z, Z o In(I o(VRo 0.) (2. 1Oa)
1=1

L
"Z, = In(Io(vR .) 1<k <M-1, (2. 10b)

where {R 0." I 1 L ) are the outputs of the envelope detectors matched to the signal (Rician

distributed random variables), and {Rk, " 1,k <M-1. 1C1 4L) are the outputs of the

-: envelope detectors with noise only (Rayleigh distributed random variables). Notice that these

optimum decision statistics depend explicitly on the signal to noise ratio through the parameter

v given in (2.3). This implies that the knowledge of the received signal to noise ratio is needed

in order to apply the optimum combining technique.

For small values for its argument. the natural logarithm of the O-th order modified Bessel

function may be written as

ln(l(x )) = IX 2 - Ix 4 + O(X 6). (2.11)
4 b)4

and for large values for its argument. it may be written as

.....................................
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ln(Io(x ))=x -In(2x )+ (8x) + 0 (x -). (2.12)

Thus, when the outputs of the envelope detectors are small or the signal to noise ratio is small,

* the optimum combining technique approximates square-law combining. When the envelope

detector outputs are large or the signal to noise ratio is large, the optimum combining technique

* approximates linear combining.

The symbol error probability for the optimum diversity combining technique is expressed

in (2.1). For optimum combining, the densities f.(L)(x ) are the (L -1)-fold self-convolution

of f ')(x ). which are given by

• io l (e )[ e)]2_ XV 2+V 4

/ i (x) 1 0exp{- [( -, xO. (2.13a)V I (I-' (e') 2v,2

1 0

and

I - (e')[1,-'* (e' )]'-2x,2
f '',,,(x) - "' (e' )-[ ' (e}.L x >,0. 1 (k (Al-I. (2.13b) -

I1 * ,

2.4 Numerical Results

We evaluate (2.1) by numericai methods .o: each of the diversitv combining schemes dis-

cussed. The 0-th order and I-st order modified tssel 'unctions are calculated by using the

* polynomial approximations given in ?203 The r. erse of the 0-th order modified Bessel func-

tion. needed in (2.13). is found by using iteration The accuracy of this method is checked by

comparing computer generated results with the tabies in '2(]. Other orders of modified Bessel

functions, required for (2.4). are computed - using the :ntegral definition for modified Bes.;el

functions. The asymptotic approximations and polynomial approximations to Q(') given in

[20] are used to calculate the densities in (2.S). To comrute the convolutions of the densi.v.

functions and to compute the probability integrals. we use ar. array processor, which

significantly speeds up the computations. See the Appendix for more information on the corn -

putational tools we use and how the data calculated for this thesis are verified.

..- -......
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In Table 2.1. we give values for the bit energy to noise ratio necessary to achieve a symbol

error probability p., of 0. 1 for the example with L =3 and M =32 for square-law combining,

linear combining. square-root combining. I-Q magnitude-law combining, and optimum combin-

ing. We use a symbol error probability of 0.1 in this and many other examples. because.

although we are discussing system performance for uncoded systems. we assume that in practi-

cal applications some form of coding will be used. For example. if a (32. 10) extended Reed-

Solomon code is used. p, =0.1 corresponds to a bit error probability of 6.48-10 .For a system

employing a (32. 16) Reed-Solomon code, the corresponding bit error probability is4.95 0'~

As illustrated in Table 2.1. the performance is about the same for each of the combining

schemes analyzed in this chapter. By examining the results for the four diversity combining

L techniques other than optimum combining, we see that linear combining is the best of the four

techniques over a large range of values of p. Square-law combining is the best of these four

over the rest of the range. From (2.11) and (2.12). we gain an intuitive explanation for the

3 rr'son why there is a crossover in the performance of square-law combining and linear combin-

ing in Table 2.1. Linear combining performs better at larger values of p. where the signal to

noise ratio of the operating point is large. (Since the system performance is based on symbol

- detection, the symbol energy to noise density ratio should be considered as the argument in the

asymptotic analysis. The symbol energy to noise density ratio is found by adding

log, 32 - 7dB to the values in Table 2.1.) Square-law combining does better for smaller values

of p where the required signal to noise ratio is smaller. Indeed, by now examining the optimum

combining results, we see that linear combining and optimum combining have nearly the same

* performance near p=1. Square-law combining and optimum combining have nearly the samne.

performance for p close to p

Consider the two performance measurements discussed in Chapter 1. There is no

ri improvement in p* for the optimum combining technique. because p* is the same for all of the

diversitv combining techniques with perfect side information discussed in this chapter. Also.



22

TABLE 2.1

Bit energy to noise ratio (in dB) required to achieve a symbol error probability of ps =0.1
for M =32 and diversity level L =3.

p Square-Law Linear Square-Root Magnitude-Law Optimum

0.475 -5.87 -5.79 -5.63 -5.65 -5.87

0.500 -0.62 -0.64 -0.51 -0.46 -0.66

0.600 2.50 2.42 2.52 2.61 2.41

.0.700 3.19 3.09 3.18 3.29 3.08

- 0.800 3.41 3.31 3.39 3.51 3.30

0.900 3.46 3.35 3.43 3.56 3.35

1.000 3.42 3.31 3.39 3.53 3.31

TABLE 2.2

Bit energy to noise ratio (in dB) required to achieve a symbol error probability of p, =0.1
for M =32 and diversity level L =5.

p 0 Square-Law Linear Square-Root Magnitude-Law Optimum

0.640 -5.80 -5.70 -5.49 -5.56 -5.82

0.650 -2.25 -2.21 -2.02 -2.06 -2.28

0 .7001 1.53 1.49 1.64 1.65 1.45

0.800 3.26 3.17 3.31 3.35 3.16

.!0.9001 3.84 3.74 3.87 1 3.92 3.73

1.0O0 4.10 3.98 4.11 4.17 3.98

'i q'%

'V

• .. . ,,. . .. . - ,. -, , .- .. - -. ,, , . . . ,, ' . ,,-','- .,. . -, .., . . ." .- . -, .. " ,.
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linear combining is nearly optimum at large signal to noise ratios. and we do not expect that the

maximum Eb IN, required over the range of p can be made much smaller. It is at the crossover

in performance of linear combining and square-law combining where the optimum combining

technique may show improvement. However, as might be expected. optimum combining does

not perform significantly better than linear combining or square-law combining at other values

of p. The differences among the five combining schemes discussed are only a few tenths of a dB.

Table 2.2 gives a comparison of the five different diversity combining schemes for L =5.

The improvement of optimum combining over linear and square-law combining at the cross-

over in performance of these suboptimum schemes is not very significant. The difference in

performance is still less than 0.1dB. In view of the examples presented. we conclude that for

systems with perfect side information, the diversity combining techniques discussed all per-

form nearly the same. It is the implementation considerations that are important in making the

decision regarding which diversity combining technique to employ.

2.5 Effects of Quiescent Noise

The results presented in this chapter are valid, given that the quiescent noise level is negli-

gible compared with the partial-band interference. For moderate levels of quiescent interfer-

ence, the performance of the diversity system will be degraded from that given, but the rela-

* tive performance among the diversity combinfing techniques would not vary greatly. For

quiescent noise levels comparable to the partial-band interference levels, the results would not

* hold. However, if the diversity system is subject to high levels of quiescent interference, the

reliability of the side information may be questionable and a different approach should be used.

This is one of the reasons for looking at alternative diversity combining techniques that do not

require side information. Another reasor is that extracting side information from external

sources can be difficult in practice. The remainder of the thesis is devoted to analyzing systems

that do not depend on side information, and that have acceptable performance in the presence
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of partial-band interference. The performance of a system with side information is looked

upon as a goal to try to achieve for systems without side information.

LA
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CHAPTER 3

CLIPPED LINEAR COMBINING

Recall from Section 2. 1. that p* is defined as the largest number such that a given error

probability can be achieved for any interference duty factor less than p' regardless of the

. interference power and distribution. When the receiver has no side information and combines

all diversity receptions of a given symbol, the use of the diversity techniques discussed in

Chapter 2 actually decreases the value of p' . A symbol error is possible even if only one diver-

. sity reception has interference. Given the symbol error probability o, and diversity level L. a

system with no side information and no coding has p' = 1 - (1-p,)IL. This small value for

p' indicates that the diversity combining techniques of Chapter 2. used in receivers with no

side information, have practically no narrowband interference rejection capability. They per-

form poorly even for small values of p. Because Ip-INI is large when p is small, it may be

desirable to clip or limit the outputs of the envelope detectors. In this chapter. we analyze a

system that utilizes clipped linear combining of diversity receptions. The role of the clipper is

to constrain the effects of strong narrowband interference.

We consider the system with M -ary o-thogonal signaling. In a system with clipped linear

combining, each envelope detector output of each diversity reception is clipped at a level C

before the diversity receptions are added. Let t denote the envelope detector output voltage

due to signal only. called the signal output voltage. The clipping level is expressed as a fraction

c times the signal output voltage: i. e.. C =c 0. A block diagram is shown in Figure 3.1 for the

k -th branch of a diversity system that employs clipped linear combining. The quantities

•R 0,"O<k <.V, -1. 1I -<L are the envelope detector outputs before they are clipped, and .i

denotes min(x . C ) so that I is the output of the clipper when x is the input. The parameter

r. Z is the combination of the diversity receptions. Given the diversity level L and the perfor-

mance level p , p" can be calculated as a function of the relative cutoff value c

m% %

• , -, .." .' '. ..'. ', '%, .' .'. '. '..' -', .'i.'.,'..*,
"'"'"'"' """''" """ ""•"" " S' ""' " "i
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Figu~re 3. 1. Block diagram for the k -th branch of a diversity system with clipped linear com,
bining
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3.1 Calculation of p"

To calculate p" for this diversity scheme, we must consider general pulsed interference of

arbitrary power and statistical distribution. The worst situation for the I -th diversity recep-

tion. given that the symbol 0 is sent. is R 0 1 =0 and Rk.1 >c 0 for k >0. At diversity level

L =1. p" is equal to the symbol error probability Ps for any value of c: interference must be

present on at least p, of the diversity receptions for there to be that fraction of errors. For

- L =2 and for c greater than one. an error can occur even if only one diversity reception has

interference present. while for c less than or equal to one, an M -fold tie can occur. Because a

tie results in an error with probability (M -1)/M. which is approximately 1 if M is large, and

because we consider the worst-case situation to calculate p". we assume that ties always result

in errors in this section. Clearly, for L =2. an error occurs if both diversity receptions have

interference present. We conclude that p" 1 -- 1 .T

For diversity level L 3. there are two values of p" depending on the value of c. For

c > 2. an error can occur if any of the diversity receptions have interference, and so

,. =-(1-p, )113 For c <2. an error can occur if 2 or more diversity receptions have interfer-

ence. but an error cannot occur if only one diversity reception has interference. Thus. p' is the

solution of p, =p 3 -- 3p2(1-p) subject to the constraint 0OP4 1.

In general. if L is even. the function p" versus c is broken into L /2 regions; if L is odd.

the function is broken into (L -1)/2 regions. For a given symbol error probability. p" is found

by solving the equations

.<c L +1 L odd
p, = E . ( J _i) p ) -1 "- .-

I L+2O<c < .- 2- L even

L =  
. ()P,( 1 -):- L << L+i+2 i=1.3...., L-2.L odd
_= -. =2.4.... L -2 .L even. (3.1)

.. . . . . . . . . . .
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* subject to the constraint 04p4 1. Table 3.1 lists the values for p' as a function of c for

* p, =0.1 and for diversity levels 1 <L 4, 7.

Another parameter we consider that characterizes narrowband interference rejection capa-

bility is the parameter prom. which is defined for Gaussian partial-band interference. The

parameter Pmin is the largest number such that a given error probability can be achieved in the

presence of Gaussian partial-band interference of any duty factor less than Pmi,. Because Pmin

depends on the signal to noise ratio as well as the symbol error probability, the diversity level.

and the clipping level, it is calculated numerically for each particular example.

3.2 Clipped Linear Combining with Background Noise

We now calculate the performance of clipped linear combining in the presence of Gaussian

partial-band interference. We also allow a nonzero quiescent noise level to account for thermal

noise in the receiver and other wideband noise sources. As before. the partial-band interference ,,

is present on a given diversity reception with probability p. and with probability 1-p. it is not

present. In either case, the diversity reception is received in the presence of Gaussian quiescent

"'* noise. This quiescent noise has uniform power spectral density 'rN o. Thus. on the fraction of

" the frequency band with interference present, the power spectral density is Ip-IN, + .NO,

*i and on the fraction of the frequency band with interference absent, the power spectral density

is 4iv' 0.

The symbol error probability for the system with clipped linear combining, given that the

* symbol 0 is sent, may be expressed as

S=E')p ) fP (y dI dx . (3.2) ,
-0 0J

The densities ik (x) for O4k 4 M -1 are the densities for the decision statistics

L
Zo - min( f(Xo,1 + )2 + (yo) 2  C) + E min(-/(X -v + 3)2 + (yJI ) 2 C) (3.3a)

i~I I =j +1

t= W
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TABLE 3.1

Values of p' as a function of c for various L and for p, = 0.1

Diversity. L Relative Cutoff. c P,

I all c 0.1000

7 2 all c 0.0513

3 0<c <2 0.1958
c >2 0.0345

4 O<c <3 0.1426
c > 3 0.0260

3O<c <_3 0.2466

3r 5 c <4 0.1122

c >4 0.0208

O<c <2 0.2009
6 24c <5 0.0926

c > 5 0.0174

4O<c <-s- 0.2786
- 7 <- <. 0.1696

c <6 0.0788

c >6 0.0149

A"a

U
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Zk -' min((X,t )2 + (YL. )2 . C) + m min(%/(Xt)2 + (Yjvt) 2 .C). 14k 4M-1.
1 =1 1 =j +1

(3.3b)

where/3 is the envelope detector output voltage due to signal only. C is the clipping level, and .

j is the number of diversity receptions with interference present. The random variables

{Xk. Y.: 04k <M-1. 14(1 j} are mutually independent zero-mean Gaussian random

- variables with variance CT?. and IXt1. Yj, 1: Ok 4M-1. j +14 14 L ) are mutually indepen-

dent zero-mean Gaussian random variables with variance cr3. The relationship between and

ao is

"1

= ~ ~ ~ -N d2(1  OpN, N 0 )

V 12 log2M (Eb/(- 1N1 +No))/L . (3.4)

and the relationship between B and 0 '.v is

vv%/ = (E, IN 0) IL
o-.V

1 12 log2M (Eb /N o)/L. (3.5)

Lf interference is present on a diversity reception. the signal to noise ratio is v1 . and if interfer-

ence is absent on a diversity reception. the signal to noise ratio is V.v-

Let (RkL: 04k 4M -1). denote the envelope detector outputs before clipping given

interference is present on the I -th diversity reception. Given that the symbol 0 is sent, the den-

sity of R. is the Rician density with parameters 13 and o', denoted by f I (x). That is,

x2+g 2  %j
f 4(x) x  x2+-- . 10(. X>O. (3.6)

The density of the other M -1 envelope detector outputs is the Rayleigh density with parame-

ter o', denoted by fj:(x). That is.

-.%..
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X2.-
f k(x ) x exp{- --.1 x >0.(37

Similarly, given that interference is absent on the 1 -th diversity reception, the envelope detec-

tor outputs before clipping are IR v,: 0<k <M-<1. The density for R'vI is fv(x ). and the

other M -1 envelope detector outputs have density fk(x ). The conditional densities f v (x)

and f V(x) are found by replacing 0,2 by o-2 in (3.6) and (3.7).

The densities in (3.6) and (3.7). and the corresponding densities for interference absent are

the density functions for the situation in which C -oo i. e.. no clipper). For finite values of

C =c/3. the density function for the sum of j clipped envelope detector outputs for the I

diversity receptions with interference present is

f'(x )= (') [G(C )j -- (g/(x - ( -I )C )](1) (3.8)

for each k. where

[gk(x ) f(l) = f(x )rc (x). (3.9)

L gZ(x )](O) = 8(x).

pc (x) I- otherwise,

. and. for I >1. [gj(x )](1) is the (-1)-fold self-convolution of [gi(x )](1). The quantity Gf(C)

is the area in the tail of the k -th non-clipped envelope detector output. That is.

G3(C) 1 - F:(c)

= 1 - fC fj(x )dx (3.10)
0

f f(x )dx.
C

where F'(x ) is the distribution function of the envelope detector outputs before they are

clipped. In other words. GI(C ) is the conditional probability that an envelope detector output

is above the clipping level and is clipped to level C. given that interference is present. In partic-

o..

.....................................
* J• S.°P °A °' ° * °• " ° " m q * " " ' ' " • •* " ' * " " "" " ' " *' " ' ° • "" '
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ular. for k #0.

--C /(202 )  ( . 1)"
a/.'(C e (311

Note that [gj(x )](1) is not a density function. However. (gl(x )](1) + 8(x -C )G/(C) is the con-

ditional density function of the k -th clipped envelope detector output given that interference is

present.

Similarly, the density function for the sum of L-j clipped envelope detector outputs

given that interference is absent is

)(f L JL - [G(C )]L - -1[g(x (L -j --i )C )](L-.:-i) (3.12)
1=0

The functions [gkV(x )]() and GL(C) are found by replacing a, by 0',v in (3.9)-(3.11). The

density function for the sum of the L diversity receptions corresponding to the k -th symbol is

f (x) convolved with jkV(x).

To calculate the probability of error in (3.2). we can normalize the densities in (3.8) and

(3.12) with respect to o"r or Ov. That is. we can let x'-x/o-,, or we can let x'-x/v in both

(3.8) and (3.12). For example, upon normalizing with respect to r.v, the normalized clipping W

level becomes CV.v and the ratio v1 / vv enters into the density function in (3.8). The result of

" this normalization is that we never have to specify , cr.v. or t explicitly. The symbol error

probability depends upon L, M, c . E IN 0 . and E, IN,.

3.3 The Clipper Phenomenon

For diversity levels greater than 1, there are many situations. depending on the value of

C, when N, = oo is nt the worst-case interference power. To illustrate how this can be possi-

* ble. consider a binary system (M =2) and assume C >0. Let {" 1: k =0, 1, 1(1(L} denote

the envelope detector outputs after clipping for a diversity reception with interference absent

and (Pb: k =0. 1 11 -<L ) denote the envelope detector outputs after clipping for a diversity

*" reception with interference present. Given that the symbol 0 is sent. the bit error probability

...................-. . .

-- " ''-'-'%' '=,,akb'L"ima ;|llm.. . . . .".' . . . ."" " ". . . . . . . . ..
e

.
"
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can be expressed as

Pb = .()Pj (l-P)1-j Pb.. (3.13)

where

L - + (3.14
Pb~=PE,~v+ E ,pv P11> J+Z _, ). (.4

1=1 I =L-j +1 1=1 I =L +1

is the conditional probability of error given that j diversity receptions have interference

present. For a fixed p. as N, -0. the power spectral density goes to 'No (whether interference

is present or absent). and

L L

I pb. IP( ' T ., >Z -v. (3.15)

for each j. Substituting (3.15) into (3.13) gives (3.13). That is, for N, =0. Pb is the same as

(3.15). independent of p and j. This is the probability of error for a binary system with

clipped linear combining and diversity L in full-band additive white Gaussian noise.

S 'Now consider what happens as N, -oo. Every diversity reception with interference

present is clipped at C. That is, an upper bound on F' (C )=I - GI (C) is
Ps

Fo (C) -2( -e--aa2*+ 2# [(_ _(..t)] (3.16)

a, a1  a1

which goes to zero as o'2 goes to infinity. The bound in (3.16) is found by using lo(x ),e-' .

Thus, with probability 1, P. 1 =C given that N, =o. Also note from (3.11) that G{ (C)-'1 if

o'--o. Therefore, for N, -cc, we have that

F

=P( Z P j~i > ' ,V'). (3.17)

Thus, for a fixed p. interference of infinite power applied to a given diversity reception essen-

,allv erases that diversity reception. By comparing (3.14) for finite interference power to

f
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(3.17) for infinite interference power, we note that there may be situations when (3.17) is

greater than (3.14). That is. a jammer may do worse than canceling out a diversity reception.

However, it is difficult to show this analytically by using (3.14) and (3.17). Thus, we illus-

trate this by reverting to the situation in which there is no quiescent noise (i. e., the limiting

case in which N o-*O).

The conditional bit error probability given that j diversity receptions have interference

present in (3.14) becomes

•L L

p6. 1 =P( Z Pl., >  P 1 I+(L-j)) (3.18)
I =L -j +1 1 =L -j +1

as NO-'O. where is the signal output voltage after clipping. We can write (3.18) as

Pb. (3.19) __

(L~ )P .>E po., I E, 0. (E,)+ -T (C) j =L,

1 = 1=12

where E, is the event

1==0

E, , n {Ro,1<C) InJ' . >C) l-<n <j-1

1=1t",• {mR1.<C1 =

In (3.19). T(C) is defined by

T(C ) : oC)t[G,(c)3L (3.20)

which is the probability of a tie given that all diversity receptions have interference present:

that is. (3.20) is the probability that all the envelope detector outputs are clipped at '.eel C

•.. . .. -. .
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given that j =L. We assume that such ties are correctly resolved with probability .. The pro-

bability of the event E, is

P(E,) =[F (C )14 [Go I(C)]i. (3.21)

Notice that

P( P I. > t +(L-j)4 Eo)=O. (3.22)

It can be shown that P(E, )-0 for n >0 as o"-?oo. From (3.16). we have that Fo(C )-*0

as o7-.co. From (3.21). Fo(C)-,0 implies that P(E, )-*0 for n >0. Also. Flo(C)-0 implies

that GI(C)-I as o-oo. Because G (C)- 1 as aI-. , we conclude that lim T(C)=I. In

conjunction with (3.22). (3.19). and (3.13). we have that Pb ... p /2 as o -*e. The interesting

thing to note bere is that lm pb. j 0 for j <L. That is. the conditional bit error probability
2

p given that less than L diversity receptions have interference present. goes to 0 as the interfer-

ence power goes to oo. If interference is present on all L diversity receptions. a tie is the worst

thing that results for infinite interference power.

IN Next we show that. for each j, Pb. in (3.19) goes to 0 as O'?-0. First. we claim that

lir pS, L =0. Note that we can use the union bound on Pb.L "

' -L L _L_

= -,L P( PI, i.) < P(U (PIC 1
1=1 1=l 1=1

L

Since iR<AI IC {R',: (R U I R{. >C , we can write

P .• P( R I P (Ro I < R I)+P (R{ > C)"

1 -8/(4a.,?) -C< /21(2a'
2 --e +e

which goes to zero as a.? goes to zero. Similarly,. -0. as 0'2-0 for j <L. Thus. the bit

A ' .-
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error probability given that j diversity receptions have interference present for j <L. is non-

zero for finite o?. and tends to 0 both as o'20 and as o]--.o. The terms Pb, j for j <L are

not monotonic in O"1.

Our numerical examples show that in many situations these non-monotonic components

of Pb in (3.13) result in the existence of a worst-case interference power other than No=00.

For M =2. L =2. and No--O. we present an analytical example. We know that for L =2.

Pb =2p(l-P)pb I+P2pb. 2 -. p2 /2

as EbIN, -0. For fixed p and C > 0. we can find values of EbIN, >0 such that pb, 1> --
4(1-p

which implies that ph >p2/2. To show this analytically, we first find a lower bound on Pb. I for

L =2 and C >f3. Observe that

Ph 1=P(Rf>P+03)=P((Rj >R1 +0) fl (Ro <C-wi)

because

P( 1 >,Po+o3 fl {R0o >C- 3})=O

- and

.L{>AJ+fl 1 R, <C-01=IRj >R +} fl iR <C-o).

*" Thus, we may write
:c-0 f (x )G' (x +Al)dx >-F' (C -OJ)G' (C) '

Pbl Jo - o 0- 1

It follows from Io(x )t 1 that

_-c 2+0 2)/(2ati - P -( 2)

which for C =c A3 and /l/a!, =JC /V, )p gives

Wa
Ph. -( 1+c 2

)(Eb /,V )P/2 _e 2
_C +.)(Eh IN, )p

If c =2. p=0.1. and Es/N =5. then

......... ........................ ..... . . .
::::::.;. ... -... . . ".. . . -. .,. . . . ... . . . . . . . . . . ..":' ""¢'i~ '::~ i'f : i " " : " i i " i



t"/" "." ', --i -: . ?:.-' ' " . . . . . . -- -. . • . . . . . . . '

L1

37

Pb. >)0.0633 > p =0.028.

Hence. we have an example for which finite interference power gives a larger error probability

than infinite interference power.

This example for No0= implies the existence of examples for No>0. To see this, let

6Pb (N?. N 0 ) denote the bit error probability as a function of Nr and N 0 . We have an example

for which Pb (NI. 0) > pb (co. 0). Because pb (NI. N 0 ) is a continuous function of N 0 . there

M exists an e>0 such that for N 0Ke, Pb (N N 0 ) > Pb (cc, N 0 ). That is. the clipper phenomenon

. also occurs for some range of values of 0K<N 0 ,e.

Figure 3.2 is a plot of the dominant components of the symbol error probability p', show-

[ ing that p, j is not monotonic with respect to Eb IN, for j <L. The conditional error proba-

bility given that all diversity receptions have interference present. p, I, decreases monotoni-

cally as E5 IN, increases. Let c, -( )p (I-0)1- j . The curves plotted are for C3 Ps.3, C4 Ps.,

c 5 P,. . and p, versus E/N. for the system with M =32. L =5. and E /No=18dB. The proba-

bilities p,., p,. . and p,.2 are small compared to the other components of p,. The non-

monotonicity of c 3 p,. 3 and c 4 p,, 4 affects the sum in (3.13) enough so that p, is not monotonic

. in EbIN,.

In Figures 3.3 and 3.4. we investigate the problem of finding the situations where the

clipper phenomenon is most prevalent. From the figures, we see that the bit energy to noise

ratio for the maximum symbol error probability increases as p decreases; i. e.. the worst-case

N, decreases with p. For p= 1. p, versus Eb IN, is monotone decreasing-the worst-case NJ is

N1 =oo. That is. at p=l. the phenomenon does not occur. It is at smaller values of p and larger

values of L where the phenomenon occurs. Also, as E_ IN 0 decreases, the phenomenon is not

apparent. and for small Eb IN,) and large p, the phenomenon goes away completely.

Due to the non-monotonicity of p, versus E6 IN . as shown in these figures. there are two

solutions for E IN, for some values of p,. For large values of Eb /N. some prediction can be

............................................... .

- . . . . . " 1
.. . ... . . . .. . . . . . . . . .
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PsA

1-

I-s

Bit eiergy to noise density ratio. E6 IN, (dB)

Figur-e 3.2. Symbol error probability versus bit energy to noise density ratio for M =32.
L: 5, E, ,= 18dB. and p=0 .6
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* 100

Bit energy to noise densitv ratio. /AIN,- iB)

Figure 3.3. Symbol error probability versus~ b~it energy to noise density ratio for Ml =32.
, =3. E, !N,,=1 dB. and P=0.5. 0.6. 0.7
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p=0.5 0.2 Eb INo= -2dB

Eb/N o= 6dB

Q-1

-. 18-i

4.

"-10 -5 18 t 15 "

Bit energy to noise density ratio. E,, IN., (dB)

Figure 3.4. Symbol error probability versus bit energy to noise density ratio for Al =32.
L =3. and p=0.5. 0.6, 0.7 for Eo /.V, ,=6dB. and p=0.2. 0.5 for E /N ,,= -2dB

," V?

. . . .... . . . . . . . . . . . . . . .
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made as to when two solutions for Eb IN, occur. That is. for large Eb/No we know that

PS _,*pz as Ni -oo. P, >pL for a range of N,. and p. <p; for smaller N1. Thus. we have that

for large values of signal to quiescent noise ratios. there is one solution for 4/N, if p>p i L,

...' two solutions for a small region of p ,pilL. and no solutions for smaller p; p, can be obtained

in that region regardless of the signal to noise ratio. For smaller values of signal to quiescent

noise ratios, the clipper phenomenon still occurs. However. it is difficult to predict the region of

p where two solutions for Eb/N, exist, because (3.15) and (3.17) cannot be solved analytically

1 for L >2.

3.4 Numerical Results

In Figure 3.5. we demonstrate the sensitivity of clipped linear combining to the clipping

level for Gaussian partial-band interference. The figure shows curves of Eb IN, versus p for

M =32 and a symbol error probability of 0.1. Suppose that the desired clipping level is equal to

3 the signal output voltage/3. but due to inexact measurements at the receiver caused by the com-

munications channel. the clipping level varies between 3dB above and below 3. The value of

Prmn for each of the curves shown is such that for P<Pmn. a symbol error probability of 0.1 is

achieved regardless of the value of Eb/N,. For C =A. Pmin is approximately 0.449. Notice that

this value of Prn is much better than the p' value predicted in Table 3.1. If the clipping level

is set above the signal output voltage. Pron decreases showing that some of the narrowband

interference rejection capability is lost: e. g., for C =1.410. pmant 0 .3 5 0, If the clipping level is

below the signal output voltage, then p.,,, increases: e. g.. for C =0.70893, pm,,0.456 . How-

ever. the maximum signal to noise ratio also increases. In spite of the deviation of the clipping

level from the desired value, clipped linear combining provides narrowband interference rejec-

tion capability that linear combining alone cannot.

Also included in Figure 3.5 is the performance of the system with linear combining with

perfect side information (no quiescent noise). For this system. pmn0.4 7 5 and p" :t0.464. The

performance of the system with linear combining with perfect side information is a lower

I,5

#. ---:,, -I ml , -, 
-

.. .. ,. "
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q."

clipped linear combining

C =0.7080=/ -
C~c

5 " --C =1.4103

C

------------------

>1~- / I'-

perfect side information
s' (no quiescent noise)

Interference duty factor. p

Figure 3.5. Bit energy to noise density ratio versus interference duty factor for Ml =32.
p,=0.1. L=3. Lb/N )18dB. and various clipping levels C for clipped linear
combining and for linear combining with perfect side information (no quiescent
noise)

... . . . . . .. . . . . . . . . . .
. . . . . . . . . . . . . . . .. . . . . . . . . .

.• ° **..*.***..* . . . . . . . . . . .
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bound on the performance of clipped linear combining. Clipped linear combining is nearly as

good as linear combining with perfect side information. However, just as it may be impractical

for a receiver to extract perfect side information, it may be impractical to implement clipped

linear combining if there is more than a 3dB deviation in the signal output voltage.

In Figure 3.6. the effect of increasing the diversity level is shown. The curves are for

* diversity levels 1 through 6. clipping level C =0. p, 0.1. M =32, and Eb /No-18.OdB. Nar-

rowband interference rejection becomes better as L increases, but because of noncoherent corn-

bining losses, the system performance becomes worse for large p.

The sensitivity of the performance to the quiescent noise level is presented in Figure 3.7.

The curves are for signal to quiescent noise ratios Eb IN 0 of 6dB. 12dB. 18dB and o, for the

system with L =3. M =32. C =. and p, =0.1 The performance curves for Eb /NO=l8dB and

"! EINoo are nearly the same.

In most of the examples in this thesis, we choose a value of symbol error probability p,

that is large (e. g.. p, =0.1). because we are assuming that coding will be employed in the sys-

tem. With p, =0.1. bit error probabilities on the order of 10 "1 to 10- are readily achievable

with coding [2]. For example, p, =0.1 corresponds to a bit error probability of 4.9510' for a

system using an extended (32. 16) Reed-Solomon (R-S) zode for error correction. For systems

using a code of rate r. the signal to noise ratios for interference present and interference absent

are

'" v. = 12 r ,og2M (Eb A(p-IN +NO))/L

and

SV.v r log 2M (Eb /NO)/L.

Suppose coding is not to be employed in the system and we wish to achieve a bit error

* probability of 4.95.10'. An example of this is shown in Figure 3.8. The uncoded system

• requires a symbol error probability of 9.59-10-' for the desired bit error probability. The

I.

f ..

....... ,..... . .-- ..-...-.............. ... . ...-.. -, .,. ..... ,........-.,,, ,.....
"" ' '' " ''" "' '" "" """."'.".. . . ."."' '". ." """.".".. . ."' "'"".'.. .''.. . . . . . . .r '' '';'
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L =2

> L=I -=3

•~~ ~ =4 2 .

-'~ =6= ,

8.2 8.4 8.6 8.8 .8-

lnte f erence duty factor. p

Figure 3.6. Bit energy to noise densriy ratio versus interference duty factor for M=32,
p, =0.1. C E3.4 N, 1=18dB. and diversity levels I through 6 for clipped linear
combining
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E6 IN = -

E6I =1d

E5- IN= d

80828.4 8.8 0.8 1.8

Interference dluty factor. p

r Figure 3.7. Bit energy to noise density ratio versus interference duty factor for A1 =32.
p, =0.1. L 3.C =0. and various quiescent bit energy to noise density ratios for
clipped linear combining



46

M =32, no coding. p, =9.59-101

Z:

Z-

C

(32 1618 oe.p 0

8. .28-8. .

Inefrec.ut ato,)

Fiur .8. Bteeg)oniedniyrto rssitreec uyfco o =2
:1 =49, 04.L=3 ,.adEI ,, ~Bfrcpdliercm iigwt

no odngan fr ciped inarcom inng t a(32. 16) R ee-Slo o code. ~=.
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uncoded system has practically no narrowband interference rejection.

We next analyze tradeoffs between diversity and coding, keeping the data rate fixed. We

"- compare a system with a low rate (n. k ) R-S code with no diversity to a system with diversity

and coding. We vary the parameters L and r =k In. the diversity level and code rate. so the

k 10g2M
- relationship that we keep fixed is R k In Figure 3.9. the systems we compare are: anL -

system with a (32. 4) R-S code and L =1. a system with a (32. 8) R-S code and L =2. and a sys-

tem with a (32. 16) R-S code and L =4. All three schemes use clipped linear combining with

C=A. The desired bit error rate is 110-1. and the signal to quiescent noise ratio is

Eb /No=ldB. Undoubtedly. the system with the higher rate code and diversity is better than

the system with the low rate code and no diversity in terms of both Prmn and the maximum bit

energy to noise ratio. Note that the scheme with L =4 and a (32. 16) rate code is a concatenated

code with total block length 128. We would expect a (128. 16) code to be superior to the

(32. 16) code with L =4. and the (128. 16) code has a higher rate. However. a block code of

length 128 is more complex to decode than the length 32 code. As long as the diversity combin-

ing scheme is not complex, diversity is a simple way to increase the block length of the

overall" code.

I '

! "
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(32 16,8=

8.8 828.4 8.6 8.8 1.8

Interference duty factor. p

Figure 3.9. Bit energy to noise density ratio versus interference duty factor for NI =32
PA iiO10'. L=3, C =O. and Eb/NV,)=Sd3 for clipped linear combining with
Reed-Solomon coding and diversity



49

C.. CHAPTER 4

THE RATIO STATISTIC AND DIVERSITY COMBINING

One diversity combining technique that has been shown to be effective against partial-

band interference uses a ratio statistic as a measure of the quality of a given diversity recep-

tion. Viterbi introduced the use of the ratio statistic in a ratio threshold test as a robust tech-

*nique to use for protection against partial-band interference and tone jamming [8]. In [9) and

No 101. a form of the ratio threshold test is analyzed from an information theoretic point of view.

The primary performance measures used in [9] and [ 10] are channel capacity and cutoff rate.

In this chapter. we compare several diversity combining techniques that use a ratio statis-L
tic in conjunction with diversity combining. We evaluate the error probability for each scheme

proposed. We use the performance measurements discussed in Chapter 1 to determine the merit

of each diversity combining technique. Thus. a diversity combining technique is judged on its

narrowband interference rejection capability and on its signal to noise ratio requirement over

the entire range of interference duty factors.

A desirable property of the ratio statistic is that the reliability of each diversity reception

is determined independently of other diversity receptions, rather than based on a measurement

such as the average received signal strength over many diversity receptions. That is. the

schemes using the ratio statistic may be more -robust- for FH systems in jamming, multiple-

access, and fading environments, where the received signal strength may vary from one diver-

sity reception to the next.

We first examine the ratio threshold test applied in a system with binary orthogonal Sig-

* naling. The ratio threshold test with linear combining is one diversity combining scheme Con-

sidered. Another diversity combining scheme we analyze uses the ratio threshold test with

majority logic decoding. The motivation for simplifying from a system with Ml-ary orthogo-

nal signaling to a system with binary orthogonal signaling is that the ratio threshold test with
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linear combining requires extensive computation for systems with M -ary orthogonal signaling.

Therefore, linear combining and majority logic decoding. used in conjunction with the ratio

threshold test. are compared to each other and to clipped linear combining on the basis of their

performance in a system with binary orthogonal signaling.

In a diversity scheme that employs the ratio threshold technique in a system with binary

orthogonal signaling, the ratio statistic is T1 max(R01 . R 1.1 )Irin(R0 ,. R,) for each

1 -C -<L. The ratio statistic for each diversity reception is compared to a threshold. The thres-

hold, denoted by 0. is a fixed number greater than 1: 0 does not depend on the signal strength at

* the receiver. If T, is larger than 0. the diversity reception is accepted, and if T, is smaller than

0. the diversity reception is rejected. The test is based on the fact that a diversity reception

* that has strong interference present is likely to have nearly equal energy in both envelope

detector outputs: such a diversity reception is rejected by ratio threshold test.

We also discuss the ratio threshold test applied in a system with M -ary orthogonal sig-

naling. For a system with M -ary orthogonal signaling, the ratio statistic T, for the I -th diver-

sity reception is the ratio of the largest envelope detector output to the second largest envelope

detector output. The ratio statistic is compared to the threshold 0 to determine whether or not -

* to include the diversity reception in the decision process.

* 4.1 Linear Diversity Combining

In the scheme employing the ratio threshold test with linear combining for a system with

*binary orthogonal signaling, the ratio statistic T, =max(R 0.1 . R 1. 1 )/min(R 0.1 , R 1.1) f or each

1 <,I L is formed for each diversity reception. If T, is greater than a specified threshold 0. the

diversity reception is accepted, and if T, is less than 0. the diversity reception is rejected. If at

least one of the diversity receptions is accepted. the accepted diversity receptions are combined.

If all of the diversity receptions are rejected. then all diversity receptions are combined. The

combiner adds the outputs of the envelope detectors of the selected diversity receptions. and

* the decision for each bit is made by comparing the sums.
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Consider the situation in which there is no quiescent noise. If the threshold is equal to 1.

every diversity reception is accepted by the ratio threshold test. and the diversity scheme is

standard linear combining with no side information. On the other hand, as 0 increases, more

diversity receptions are rejected by the test. For 0 equal to infinity, the only diversity recep-

tions that are accepted are noise-free diversity receptions. since max(R 0 J.. RJ);10 and

* min(R 0 1 R 1.1 )7-0. There is never an error if one or more noise-free diversity receptions are

received. An error can occur only if all of the diversity receptions have interference present.

Thus. for large 0. the diversity scheme approximates linear combining with perfect side infor-

- mation.

For the situation in which there is no quiescent noise, the desirable behavior of rejecting

nearly every diversity reception with interference present as 0 increases is not reflected in the

value of p" for this scheme. We have that

p, =1-( -pb )I1L (4.1)

for the ratio threshold technique and linear combining, which is the same as p" for standard

- linear combining with no side information. That is. considering the worst-case pulsed interfer-

ence. an error can occur even if only one diversity reception has interference present. However.

the value of pm, for Gaussian interference is expected to depend on 0 and to be greater than p.

In the presence of quiescent noise. all of the diversity receptions are rejected for 0 equal to
g

infinity. Thus, the ratio threshold test with linear combining reduces to standard linear combin-

ing (no side information) as 0 approaches 1 or as 6 approaches oc. It is at intermediate values of

0 where the ratio threshold technique may be an improvement over linear combining.

We now derive the bit error probability Pb for the ratio threshold test with linear com-

bining. There are two different ways a diversity reception with interference can be accepted.

Suppose that symbol 0 is sent. and let

p, =Pz (R. >R .9)-P(R,) >R 1 0 interference + noise present)

I

*
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and

p, =P' (Rt. >R 0 .9), P(R,.1 >R).0 1 8 interference + noise present).

The sum of p, and Pe is the probability that a diversity reception with interference is accepted.

Thus, 1 - Pc - p, is the probability that a diversity reception with interference is rejected.

The probabilities Pc and p, may be written as [10]

= 192 exp-vI2/(2( I +02)) (4.2)Pc -1 -1+02

and

_Vexp{-v-2 /(2( 1+02)))
Pe =xl /2 (4.3) ;f

1+02

where vI is defined in (3.4).

Similarly. there are two different ways a diversity reception with interference absent can

be accepted. We define the quantities p, and p,., for divers y receptions with interference

absent by replacing vI by vy in (4.2) and (4.3). respectively. For 0=1, p, and p,.. are the pro-

babilitv of correct reception and the probability of error for a system with binary orthogonal

- signaling and no diversity in additive white Gaussian noise. The probability that R 0 1 >R 1 .1

"' for a given diversity reception is

Pc PP_ +(l-p)p,. (4.4)

*- and the probability that R l. > R o. 0 for a given diversity reception is

Pr = P + o PP, (4.5) i

Thus. the probability that a diversity reception is rejected is 1-Pc -PE.

The probability of error for a system using the ratio threshold technique with linear

diversity combining can be. written as

S-." . " .- " "" "e ." . . . . ,. . . . . .. ' ' " " - - . ..... .' . . . . . . ..- . . .
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'- L L-a -'*Z = C(L " n L-n-m)P p (1-Ppc)L- m - P(e;m n), (4.6)

n 0 M =0

where C (N; N 1. N2 N,) is the multinomial coefficient defined as N !/(N !N,-! "" N,!) for
r

Z N, =N. The term P (e m . n) is the probability of error given that n +m diversity recep-

tions are accepted; n of the accepted diversity receptions have R 0, > .10 and m of the

accepted diversity receptions have R 1.1 > R o. 10. The number L -m -n is the number of diver-

sity receptions that are rejected. If m =n =0. then all the diversity receptions are linearly com-

bined. Otherwise, only the accepted diversity receptions are linearly combined.

First consider P (e" m , n) when m *0 or n ;0. To compute this conditional probability

of error, let Z denote the difference R0 -R .I. With probability p. interference is present on

a diversity reception, and with probability 1-p. interference is absent on a diversity reception.

Thus, we may derive the density for Z by using a p-mixture model for the interference. That

is. the density for Z may be written as p times the conditional density for Z given that the

interference is present. plus l-p times the conditional density for Z given that the interference

is absent. We consider the two ways a diversity reception can be accepted. and find the condi-

tional density for Z given each of these. Thus, we compute the conditional density of Z givenS

- that R 0.1 > R 1,. denoted by fz((z R. > R 0). and the conditional density of Z given that

. RI. >Ro0.9, denoted by zf(zl R1.t >Ro.10).

First consider the situation in which interference is present. Suppose f (x. y) is the
0. 1

" conditional joint density of R 0.1 and R 1.1 given that interference is present. so that

Sf, (x,yR 0 >R 1 1 0) is the conditional joint density of R 0, and R 1,1 given that

Rol >R 1. 0 and that interference is present. Similarly. suppose /,(x . y ) and

'°'- (x , Y I Ro , > R ., 0) are the corresponding conditional densities given that interference is

absent. Then. for the p-mixture model for the interference, we may write

x .(x.yJR.! >R_, )=pf I(x. y R >R. 0) + (1-p)f -v (x.y R,),>R, .0). (4.7)

and

fz

..........................................

.. .. .. .. .. . . • ..- ••• •" °- - - •"-" "• • "°"-" ","%"• '"• ° o """ " % " "% "°""" ' '
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00:., / z Ro.1 > R ,10) f /o. (U +z. U 0 I , >R Ij 9)du. (4.8)

Using a form of Bayes" rule (211. note that

S ((xy)Ro.>R.)= >R1. 0  1 x. R1 1 y )f 1 (x. y)
0.1 0.1PC

The probability P (R 0 . > R 1 6 R 0, =x. R1  -y) is trivial: it is unity over the region

x > y 0 and is 0 otherwise. Also, because the signals are orthogonal. the density f (x . Y) isS 0. '

the product of f I(x) and f I (y). the marginal densities of the envelope detector outputs given

that the interference is present. defined in (3.6) and (3.7). After using Bayes" rule on the den-

sity f4. (x, Y1 R 0 ,1 >R 1 ,1 9), we can write (4.8) as

f,(zjR 0 . >R 1 1 60)=f f10(1) 1P fI(U + )f I(U+ 0P) f Y 1 1+1 1 C ( d. z >0,
PC 0. 1•r

(4.9)

where the limits on the integration were found by examining the region in which

f (x. y Ro >R 1.!0) is nonzero. A similar derivation shows that the density of Z condi-

tioned on R 1.1 >R 0 .O is

(z R1.1>R.I0 = <: f /'(U )f(U,-Z + fV( f- U- uZ< 0. .

(4.10)

Once we have computed the densities in (4.9) and (4.10). the density function for the sum

of the Z for accepted diversity receptions. denoted by f ( : m . t ), is the convolution of the

(t -1)-fold self-convolution of fz (z I R 0 .1 >R 1 6) with the (m -1)-fold self-convolution of

f (- IR 1 , >Ro,). (Recall that an r-fold self-convolution of f is f if r =0, it is f*f if

r =1. etc. It is 8() if r =-1.) The conditional probability of error P(e m r ) is the integral of

/ (4; m. n ) over all negative values of . provided that m 0 or n 0.

The conditional probability of error P(e •0. 0) in (4.6) is the probability of error given

that all of the diversity receptions are rejected by the ratio threshold test. We need to find the

."... ..7...... ,".,........ ...r...........-.................
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conditional density fz (Z IO- < R o. 1/R 1 1 < 0). By using Bayes' rule as before and after

finding the appropriate limits of integration, we can write the conditional density for Z as

* fz(z 0- < R0, 1/R1 , < 8)

P ff I~s+z)f 1 (u)+ I-' J(U +Z)fN(U)du z0
z/( -lPC -Pr, 0 1 j

(4.11)

f P) U f( + -- U) U- u 0
Z-- PC 1- -p. 0 1-p -p '

r The probability P(e" 0. 0) is found by taking the L -1)-fold self-convolution of the condi-

r
tional density for Z in (4.11). and then integrating the resulting density from -0 to 0.

In the numerical calculation of Pb for the ratio threshold test and linear combining. we

can normalize the density functions in (4.9)-(4.11) with respect to O0 .v so that pb is a function

of p. L . Eb INo, and Eb IN,. We do not need to specify the signal output voltage /3 or the
F. .

p.* noise densities No and N, explicitly. Due to the normalization, the ratio o.v /O' is involved in

the calculation, but this ratio is just v, /v .v . where v, and Vy are defined in (3.4) and (3.5).

4.2 Majority Logic Decoding

Another diversity combining scheme based on the ratio threshold test uses majority logic

decoding for a system with binary orthogonal signaling. A hard decision is made on each

accepted diversity reception. The probability that a correct decision is made on an accepted

diversity reception is Pc, defined in (4.4), and the probability that the decision is incorrect is

P.. defined in (4.5). The probability that a diversity receptin is rejected is I-PE -Pc. After

all L diversity receptions corresponding to the bit are tested. majority logic decoding is used on

the accepted diversity receptions. In this scheme, it is assumed that in the case of ties and in

the case in which all of the diversity receptions are rejected. the probability of a correct deci-

S--
~~%1
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1
sion is Then. the average bit error probability for the ratio threshold test and majority logic

is [l"-

( 1- P E -PC )L LP6 . + E(i)(0-PE-PC )7-i :..
2

(T)?P m + - 2-L I /2 (4.12)

where Ix I is defined as the smallest integer greater than or equal to x. and lx I is defined as the

largest integer less than or equal to x. Notice that ties can occur if L is odd. except that ties do

not occur if an odd number of diversity receptions is accepted.

To calculate p" for this scheme. consider interference with arbitrary power and distribu-

tion. The ratio threshold test does not mitigate the worst type of interference. In the absence

of quiescent noise. an error can occur on any diversity reception with interference present. but

an error does not occur on a diversity reception with interference absent. Thus. if interference

is present on L-1 or more diversity receptions for a given bit. an error is made. Given the
°2

desired bit error probability Pb P" is the solution for p in the equation

Pb = P (4.13)

A comparison of (4.13) and (4.1) shows that the value of p" for majoritv logic decoding is

" better than p' for linear combining for L >3.

In Figure 4.1. we demonstrate the sensitivity of the bit error probability to 0 at small p

-* for the ratio threshold test with linear combining and for the ratio thresholo test with majority

logic decoding. It is at these small values of the interference duty factor where the ratio thres-

hold technique is useful. Consider the curves for the ratio threshold test with linear combining

S"(shown as solid curves in Figure 4.1). Recall .- at for 0=1. the ratio threshold test with linear

- combining is equivalent to standard linear combining. In the example shown, there is a value

Le.
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majority logic decoding

p=0.05de

u linear combining
/t p0.

p=.0

Threshold. 6

rFigure 4. 1. Probability of error Ab versus the threshold 6 for small interference duty factors.
L =3. E4 /No= 18.0dB. and Eb/N 1 = 12.0dB for the ratio threshold test with
diversity combining
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of 6 greater than 1 that gives the minimum probability of error for each p<0.2. Thus, for

small interference duty factors. the ratio threshold technique can do better than linear combin-

ing. A threshold of around 0=4 works well for this scheme. For large values of 0. the combin-

ing scheme approximates linear combining because nearly all diversity receptions are rejected

and included in the combining. Thus, the bit error probability Pb is the same for 0=1 and

0=00.

Now consider the curves in Figure 4.1 that correspond to the ratio threshold test and

majority logic decoding (shown as dashed curves). The probability of error is much more sen-

sitive to 0 for majority logic decoding than for linear combining. The minimum error probabil-

ity for majority logic decoding is smaller than the minimum for linear combining, which indi-

* cates that majority logic decoding can perform better than linear combining against narrowband

interference. A threshold of 0=2 works well for the ratio threshold test and majority logic

- decoding. The probability of error goes to T as 0-oo because nearly all diversity receptions

are rejected and random decisions are made.

The performance of the ratio threshold test with linear combining is shown in Figure 4.2

for L =1. 2. and 3. The curve for L =I is independent of 0. In terms of narrowband interfer-

* ence rejection capability. L =2 is better than L =1. However, L =3 does not improve nar-

". rowband interference rejection over L =2.

The performance of the ratio threshold test with majority logic decoding is shown in Fig-

ure 4.3 for L =1. 2. and 3 with 0=1. and f-r L =2 and L =3 with 0=2. Narrowband interfer-

ence rejection is improved as the diversity level is increased. For L > 3. the ratio threshold test

* vwith majority logic decoding has larger values of P.', than the ratio threshDd test with linear

combining. However. majority logic decoding does not perform as weil as linear combining

against interference which has a large duty factor.

The intuitive reason for the superiority of majority logic decoding for narrowband

.interference rejection is illustrated by considering the example with diversity level 3. Consider

. .. .. .. ... ..... ..- ..' ... '--. ." ." .
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the situation in which three diversity receptions are accepted. Suppose R .1 > R . 0 for two

i diversity receptions. and R . > R 0 . 10 for one diversity reception. There cannot be an error for

majority logic decoding in this situation. However, there is a possibility of an error for linear

combining. A situation that favors linear combining is as follows. Suppose R 0.1 > R 1•10 for

one diversity reception and R > R, 10 for the other two diversity receptions. A majority

logic decoder makes an error with probability I in this situation, while a system that employs

linear combining makes an error with probability less than 1. If p is small, the first situation

has higher probability than the second situation. Also, other possible situations do not heavily

favor either linear combining or majority logic decoding. For example. the situation in which

two diversity receptions are accepted, one with Ro*t > R . and the other with R 1. 1 >Ro. 1,-

does not heavily favor either diversity combining scheme. Furthermore. there cannot be an

error for majority logic decoding or for linear combining for the situation in which all accepted

diversity receptions have R. > R1 . An error is made with probability 1 by both of the

diversitv combining schemes for the situation in which all accepted diversity receptions have

R _, > R, 1. Thus, we conclude that for L =3. majority logic decoding has an advantage over

linear combining in the presence of narrowband interference.
i

As the diversity level increases above L =3, majority logic decoding increases its advan-

"- tage over linear combining in narrowband interference, because there are more situations with

high probability that favor majority logic decoding. For small p. the interference is strong

when it is present on a diversity reception. Majority logic decoding does well in spite of the

strong interference, because errors do not "propagate- in a majority logic decoding scheme.

However, interference "propagates" within the sum of L diversity receptions in the linear

combining scheme.

In the next section, we show that Pmin can be increased for the ratio threshold test with

linear combining. The value of E, /N1 can be decreased for large values of p for the ratio thres-

hold test with majority logic decoding. This improvement is gained by changing the strategy of

1.

. .. . -. . . . -. .- . -..-..-. .. ... . . .. . .. ... . . . . . . .,. . - ,-" ... -,!
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the linear combining and the majority logic decoding schemes for situations in which all diver-

sity receptions are rejected.

4-3 Variation on Linear Combining and Majority Logic Decoding

The strategy of combining all of the diversity receptions when all are rejected is not

optimum. We may want to use the ratio T, once again to determine which of the rejected

diversity receptions to combine. In this section. we consider a modification of the linear corn-

bining and the majority logic decoding techniques used with the ratio threshold test. We dis-

cuss the scheme that uses only the diversity reception with the largest ratio statistic for the

situation in which all of the diversity receptions of a given bit are rejected. This variation can

be applied to systems with diversity levels greater than 1.

For the variation on linear combining, we need to recalculate P(e• 0. 0) and incorporate it
1

into (4.6). For the variation on majority logic decoding, the factor of "r in the first term of

(4.12) is replaced by the newly calculated P(e• 0. 0). To begin the analysis of the probability

of error P(e: 0.0). we note a few useful facts. Let {R0,1 : 1I L} and IR 1  I L}

denote the envelope detector outputs for the L diversity receptions of a given bit and let

-T, = for each I. Given that all the diversity receptions are rejected. we have thatR ,).

d- 1 < r, < 0 for all 1. Also, for analytical purposes. an error occurs if the symbol 0 is sent

and max T1 > max-L. But, note that max- = Finally. if the symbol 0 is sent and, I tJ I mt rin t ,.

all diversity receptions are rejected. there can be no error for max 71 < 1 since this would

imply R!)f > R 1 1 for alll.

We define the random variables U =max '. W =min T . and V W - in order to simplifyI l

the expression for the probability of error. We find the p-mixture density and distribution

Iunctions of r, as follows. If the symbol 0 is sent. -r, is the ratio of a Rayleigh distributed ran-

dom variable to a Rician distributed random variable. Let f(t) and F.(:, ) denote the

.'- .-..-....-.-... '..-..... .. 5....--......... ....-..--........-.. '...-.............-.".,,...."........
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conditional density and distribution functions for the 71 given that the interference is present.

*Then

fI~r~f~tx ~XpI 2(t 2+ 1 )+v, 2

(t f f* expl-t+)2 }o(v x )dx. t >0,
1"0 2

t (2t 2 +2+V, 2)expl_ 2 t >0, (4.14a)

(t 2 +1) 3  2(t 2 +1)

and

S2 
-

1xp 2 (t 2+)+v? Io(vl x )dx, t >0. (4.14b)
t 2+1 2

where 10(-) is the 0-th order modified Bessel function. The density and distribution functions

of r, for a diversity reception with interference absent, denoted by f; (t ) and F-v(t ). are

found by replacing v, in (4.14) by V.v. We may write the p-mixture density and distribution

functions for 7i as

f.) =(t pf (C)+(.p)f;V(t) t >0. (4.15a)

Ui

and

F(t) = pF'(t )+(1-p)F' (t). t >0. (4.15b)

The bit error probability given that all the diversity receptions are rejected can be

expressed as

P (e:'0, 0)= P (U > V 19-1 <W <U, 1 <U <0)'-P (U >110-1 <U<0)

P(U-'<V<U,I<U <6) P(1<U<0) (4.16)
F (0- 1 <W <U. I<U <6) P(0-1<U <6)

The joint density function of U and V, the joint density function of U and W, and the distribu-

tion function of U. which can be written in terms of f (t) and F (t ) in (4.15). are required to

solve (4.16). The distribution function of U is just [F_(u )]L. Thus. we may write

-.

......................... ... . . . .......- .,.. .,.-...,---.-.--.,
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P(U >119-'<U <0) = F) - )] (4.17)

[-IF ()]L -[F(9-)]L

The joint density function of U and W is

fu, w(u ,w) = L (L -1)[F (u)-F(w )]L-
2 f(u )f(w). 0<w <u <cc, (4.18)

and by making a typical transformation of variables, we can write the joint density function of

SU andV=W- 1 as

fu. , v) (v L (L-1)v- 2[F (u )-F (v-1)]L - 2 f .(u )f(v-). 0<u-<V < 00. (4.19)

Using the joint densities given in (4.18) and (4.19). we have that

P(U>V10-I<W<U, i<U<6) = f (4.20)
- . >V1 9<0) f u W (u. w) dw du

The desired conditional probability of error is found by substituting (4.17) and (4.20) into

(4.16).

Comparisons are made in Figures 4.4 and 4.5 among the diversity combining schemes

which use the ratio threshold test. Clipped linear combining is also included in the comparison.

In Figure 4.4. the diversity level is L =2. For small p. all of the combining techniques using the

ratio threshold test perform better than standard linear combining (9=1). The variation on

linear combining with the ratio threshold test has the best value of Pmn, and. for large values

* of p. its performance is about the same as that of standard linear combining.

Figure 4.5 gives a comparison of the diversity combining schemes for diversity level 3.

Majority logic decoding is the better scheme, out of those using the ratio threshold test. to

employ for narrowband interference rejection. The variation on majority logic gives more than

.dB improvement over majority logic decoding without the variation for large interference

duty factors. The performance of the ratio threshold test with linear combining is disappoint-

ing. Although the variation on linear combining has a better value of pmn than linear combin-

ing without the variation, there is no improvement for diversity L =3 over L =2.

• ~ ~~~~~~~~~~~~~ ~ ~~~~. .. .... . •..... ...-.. -..-........-... +-........ -.. +..,+. . .- -. +
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Figures 4.4 and 4.5 illustrate that clipped linear combining is better than the ratio thres-

hold technique in terms of narrowband interference rejection capability. However, the ratio

threshold test with diversity is an improvement over standard linear combining. The ratio

threshold test with majority logic decoding appears to be a good technique for systems with no

side information. Although p,,i, for the ratio threshold technique is not as high as pm,, for

clipped linear combining, implementation considerations may favor the ratio threshold tech-

nique. That is. there are situations in which it may be difficult to set the clipping level for

clipped linear combining, but in which the ratio threshold test would still work.

It should be noted that for the diversity scheme employing the ratio threshold test with

r the variation on majority logic decoding. th~e error probability is not as sensitive to the thres-

hold 0 as it is in Figure 4.1 for the scheme with the ratio threshold test with majority logic

decoding without the variation. Figure 4.6 presents curves for the sensitivity of pb to 0 for the

5 ratio threshold tes with the variation on majority logic decoding. A value of 0 within the

range of 2 to 4 works well for this scheme. Larger values of 9 work better for majority logic

decoding with the variation than for majority logic decoding without the variation. This is

because for the situation in which all of the diversity receptions are rejected. a more probable

* situation for larger values of 9. it is better to apply the variation than to make a random deci-

sion. Notice that the minimum error probability pb over the range of 9 is smaller for the

curves of Figure 4.6 than for the curves of Figure 4. 1.

4.4 The Ratio Threshold Test for M-ary Orthogonal Signaling

In this section. we analyze a diversity combining scheme that uses the ratio threshold test

* for a svstemn with M -ary orthogonal signaling. The ratio statistic 7,: for the I -th diversity

recptonis the ratio of the largest envelope detector output to the second 'argest envelope

detector output. As before, if T? >0. the I -th diversity reception is accepted. and, if 2", <9, the

diversity reception is rejected. A hard decision is made on each accepted diversity reception. If

there is at least one accepted diversity reception. the symbol that corresponds to the envelope
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detector output with the maximum number of decisions in its favor is chosen. By a tie. we

mean that two or more symbols have the same number of decisions in their favor, and all other

symbols have a smaller number of decisions in their favor. In the case of a tie, a random deci-

". sion is made among the symbols involved in the tie. If all of the diversity receptions are

rejected. then the decision is based on the diversity reception with the largest ratio statistic.

Suppose the symbol 0 is sent. The envelope detector output R o. 1 for the I -th diversity

reception is a Rician distributed random variable, and the other M -1 envelope detector outputs

* are Rayleigh distributed random variables. For each value of 1, form the order statistics for

the M -1 Rayleigh distributed envelope detector outputs as follows:

(M). > R 2 , > ""' R M-1). - (4.21) .

Three of the envelope detector outputs are of importance in determining the distribution of the

ratio statistic T1. R(1).t will always be a component of the ratio statistic. The larger of the

envelope detector outputs R o.1 and R(2).I will be the other envelope detector involved in the

ratio statistic. The I -th diversity reception is accepted if R (1). t/max(R, . . R (2).! is either

greater than 0 or less than 0-1. Otherwise. the I -th diversity reception is rejected.

We need to calculate the probability that a diversity reception is accepted or rejected for

M M-ary orthogon. signaling. Consider a diversity reception with interference present. There

are two different ways this diversity reception can be accepted. Assuming the symbol 0 is sent.

it is desirable that R0 ,1 >R 1. 1 0. and undesirable that R('1). >Omax(R 0 1 . Rl 2 ). Let

pc PI (Ro. > R'(1). 9)

I

and
p,-

* P'= (R('j).1 >0max(Ro 1. R5:), )). '

Let f ' (x) and F" (x) denote the conditional density and distribution functions for R,). given0

that the interference is present. Let fj(x ) and F!(x ) denote the conditional density and distri-

bution functions for each of the other envelope detector outputs iRk.: 1 <k -<M-I. I1 L

I. r

[ . . .. -§. - ° o °
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given that the interference is present. Then, the the conditional distribution function for R (1).

given that the interference is present is

F' (x)= [FI(x ) -.

The conditional joint density function for R('), and R('2)., is [22]

f<. ¢I)(x . y )=(M - I)(M -2)[F'(x )Y1 -3 fI(X f 1(y ) -

Thus. we can write Pc and p, as

PC= f [,(x 9-)]M -f I (x )dx. (4.22)

and

Pe =P (R(' 1). >Ro1  e fl R RI,>R( 2).1O)

= P (R('1).f >Ro. 1 0) PI (R(I).I >R,(2)O) ""

= 1 - f -IF(x )]M"Ift'(x )dx I (M -1)f -F(x -1)Y]I-2f,,(X )dx j.(4.23)
e s m of ac

The sum of p and p, is the probability that a diversity reception with interference is accepted.

"':Thus. 1- PC -p, is the probability that a diversity reception with interference is rejected. "

Note that the integrals in (4.22) and (4.23) can be written as sums of terms of alternating

signs. For example. (4.22) may be written as

M-1 2 V7
2

;:PC 7 -+9-2 exp(- . .+"2ii7 =o 6  2 (n +0)

However, we choose to keep the expressions in integral form to avoid numerical problems that

arise in calculations of the sums for M > 16 due to alternating signs on numbers with large ,

magnitudes (23].

There are two different ways a diversity reception with interference absent can be

," accepted. We define the quantities p, and p.. for diversity receptions with interference absent

by replacing f/"(x ). F(x ). and f (x) by f,'V(x ). F,:(x ). and f (x). respectively. in (4.22)

and (4.23). For 0=1. p, and p. are the probability of correct reception and the probability of

S -..-...-. . .. ...-... . .. ............ "
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error for M -ary orthogonal signaling in additive white Gaussian noise with no diversity. Using

the p-mixture model for the interference, we can write the probability that R o. 1 > R ('1). 10 for a

given diversity reception as

Pc Ppc +(1-p)pr. (4.24)

* and the probability that R ().1 >Omax(R 0 1 . R (2), ) for a given diversity reception as

PE =pp, +(I-)p,. (4.25)

Thus, the probability that a diversity reception is rejected is 1-PC -PE.

We now derive the conditional probability of symbol error given that at least one of the

L diversity receptions is accepted. Let i >0 denote the number of diversity receptions that are

accepted. Let m denote the number of diversity receptions with R1 ). >0max(Ro . R 2 ).,).

Thus. i--m is the number of diversity receptions with R, I >R(1 ). A hard decision is made

on each of the accepted diversity receptions. Then the envelope detector output with the max-

imum number of decisions in its favor is chosen. An error occurs if more than i -r of the m

diversity receptions with R(1 1 > Omax(R .,,, R( 2 ; 1) favor the same symbol. That is. if say the

k -th envelope detector output RL. I = R t1). 1 for i -m +I or more accepted diversity receptions.

- then an error occurs. Note that if i =m. an error occurs with probability 1. Also, note that m

. must be greater than or equal to i -m +1. which implies m >, + for an er-or to be possible.

Let p (e Al-I. m . i-m ) denote the conditional probability that i--m +1 or more of the

m diversity receptions with R,: >Omax(R,) R, 2 .) favor the same symbol. This probabil-

ity is conditioned on the event that m diversity receptions have R1 1 >Omax(R,. R 2 ). )

i-m diversity receptions have R,). >R;1 . and i >1. To find p (e M -1. m. i-r). consider

the problem of distributing rn indistinguishable balls randomly among M -1 distinct boxes.

The probability p (e; A -I. m, i -rn ) is the same as the probability that at least one of 31 -1

boxes holds at least i-rn +1 balls. This analog to our problem applies because the random vari-

ables R, are identically distributed and statistically independent for each k ;dO. and for each

-. r
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I. The probability that Rk I R ('j). 1 for the I-th diversity reception is equal to (M -l)-1 for

each k *0. In our model, a ball placed in the k -th box represents the situation in which the

k -th envelope detector output is the maximum.

There are v(M -1. m) total ways to distribute m balls in M -1 boxes, where

v(q.r) (q +r (4.26)•r

For our problem, we need to find what number of these combinations meet the condition that

there is at least one box which holds i-r +I or more balls. Alternatively. we can find the

number of ways to distribute m balls among M -1 boxes so there are no more than i -m balls

in any given box. and subtract this result from the total number of combinations. This alter- 6%

native view is a problem of unordered sampling with limited replacement. The solution to

such a problem is the coefficient of t' in the generating function (1 +t + +t'  ).' -'[24].

The desired coefficient for our problem is 71(M -1. m. i -m). where

7(q, r, s )( )(r-ks-k +q-1) (4.27)?- k k r -ks -k,

We define 1(0. 0. s )=1 and (x)=O for y <0. Note that if r >qs. (4.27) is equal to zero. That

y

" is. the number of balls must not be more than the number of boxes times the capacity of a box.

" Thus. if m >(M-1)(i -m). then there are 0 combinations of balls in boxes that meet our

requirement of no more than i -m balls in any given box.

The conditional symbol error probability given that m diversity receptions have

R 1). >Omax(Ro.1 . R 2 ).). i-mr diversity receptions have R 0.1 > R'(1), 1. and i >0 (excluding

ties involving the symbol 0) may be written as

1: m >iNM-1

|: ~P (e "M -1. M, i -M)=
) (M-1 M. i -m ) M 1M <,

1. M- J M
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The symbol error probability for i >0 (excluding ties involving the symbol 0) is

.-. L L'ai-

Ps.E = 1-PE Pc()L Mi -1. m i -m1=1 i~ -

+

. + ()PM - (4.29) "

"ji , +1 m

" Next we calculate the symbol error probability due to ties for i >0. Recall that in a tie.

two or more symbols have the same number of decisions in their favor, and all other symbols

have a smaller number of decisions in their favor. We are only concerned with ties involving

r the symbol 0. Ties that occur among the other M-1 symbols result in a symbol error. and this

situation is included in the expression in (4.29).

A two-way tie is a tie between the symbol 0 and any one of the other M -1 symbols.

Returning to the model of the balls in the boxes. a two-way tie occurs if exactly one of the

M l-1 boxes contains exactly i -m balls and the remaining M -2 boxes each have less than

i -m balls. Assume that the k -th box holds i -m balls. Then there are 2m -i balls left to dis-

.m tribute among the remaining M -2 boxes. For there to be at least one combination possible. m

must meet the condition j<M < (-)-(M--2). The lower limit on m is due to the fact

that 2m -i >0 for a two-way tie to be possible. The upper lilait on m is derived from the con-

dition that r (qs for 7(q, r, s )>O. Another requirement for a two-way tie is that i, the

number of accepted diversity receptions must be greater than 1. We assume that a random

guess is made if a tie occurs. Thus. the probability of error given that there is a two-way tie is
1

The probability of a two-way tie times the probability of error given that there is a two-

way tie is

( ..

. i............ ............................ .....,,...........:..-..:.. .-....... . ;....:. .:...:. : :-.--:::::2'i
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(M-1)--(M-2)

" (M-) -

-."

A three-way tie is a tie among the symbol 0 and any two of the other M -1 symbols. For

a three-way tie to occur. M and i must be greater than or equal to 3. The probability of a

three-way tie times the probability of error given that a three-way tie occurs is

i (M-I)-(M -3)
2 (M :M-1), . ,7(M-3.3m,-2i. i-m-i)

2 E "V(M-lM
,, =11i I

By continuing on with this pattern, we find that the symbol error probability due to ties can be

written as

L min(i-1, M- 1 j 1
Ps.T = I:( i EPPc)' - -T

i =2 j=1 j+ 1

_ (M M-m)

Finally, we consider the case in which i =0. When all of the diversity receptions are

. rejected. a random decision is made. Thus. the symbol error probability given that all of the

diversity receptions are rejected times the probability that all of the diversity receptions are

rejected is

p",R (IpE pC)L (4.31)

Then. the symbol error probability for the system with the ratio threshold test for M-ary

Sorthogonal signaling is given by

P =Ps. E +P5. r +P,.. (4.32)

The variation discussed in Section 4.3 may be applied in this scheme. That is. for the

situation in which all diversity receptions are rejected. the decision may be based on the

............................................ 
....
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diversity reception with the largest ratio. The derivation for the probability of error for this

UI situation is set up in Section 4.3. We only need to calculate the density and distribution func-

tions: f (t) and F (t) for M -ary orthogonal signaling, where r, is now defined as

max(Ro. R (2 )./) .

for each 1 41 <L. First, consider the conditional distribution of rl given that the interference

is present. The conditional density and distribution functions for Irj. given that the interfer-

ence is present, may be written as

S(t) (t IRo., >R'(1), )PI (Ao, >R(, . )

1 + f (t IR 2,, <Ro. <R 1 )'. )P' (R(',), <R0.1 <R(,).,)

V. + f (t R 0., <R, 2),1 )P' (R.I <R )) (4.33a)

and

F' (t) F (t [RI, >R(1).1)P' (Ro.I >R' 1 ), )

+ F 1 (t IRi2,., <AoB < RI). )PZ (R,)f < R. <R( )/)

+ F1 (t IRo. t <R 5 ), )P'(Ro t <R('2),). (4.33b)

• Each conditional density and distribution function given in (4.33) involves an integral with a

- complicated integrand, so that it is not trivial to compute (4.33) numerically. For example, we

may write

' f (t IRo, <R('2),)PI (Ro I <R(2), 1)

= (M -1)(M -2)f x [F1 (x )]'/- -''(x )f,(tx )f f, (y)ddx . t > 1.
I

To compute f , (t) and Fl- (t). it is necessary to compute six such integrals. Also. similar corn-

" putations must be done for f ' (t) and Fr' (t). Then, the p-mixture density and distribution

functions for r! should be formed as in (4.15). Finally, the resulting density and distribution

functions for T, should be substituted into (4.16)-(4.20) to compute p, for the variation.

Because of the lengthy computation required for the variation. our numerical results do not

t . .



. . .. . . .. .

76

*include examples of this diversity combining scheme. Instead, we use P,, R provided in (4.31).

Figure 4.7 illustrates the sensitivity of the Symbol error probability p, to the threshold 6

* for three values of M.- The symbol error probability is very sensitive to the threshold. The

* scheme with the ratio threshold test for M -ary orthogonal signaling works well for small

values of 0. and it works poorly for values of 6 greater than 3. Care must be taken to choose a

* good value for the threshold. Figure 4.8 gives another analysis of the sensitivity to 0. The

solid curves correspond to the performance of the ratio threshold test with 32-ary orthogonal

* signaling for 0=1.01. 0=1.3. and 0=1.7. The signal to noise ratio requirement decreases with 0

However. pmii. also decreases with 6

The other curves included in Figure 4.8 are for clipped linear combining with C =0

* (shown as the dashed curve), and for optimum combining for receivers with perfect side infor-

mation (shown as the dotted curve). The value Of Pmi is greater for the ratio threshold test

than it is for clipped linear combining in this example. But, this is at the expense of a high sig-

- nal to noise ratio requirement. Recall, however, that the value of 6is chosen by the communi-

* cations system designer, but the clipping level for clipped linear combining may vary due to the

communications channel. We see from Figure 3.5 that the sensitivity of clipped linear combin-

*ing to the clipping level has a similar behavior to the sensitivity of ratio threshold test to the

* threshold, but that this sensitivity is not in the hands of the syslem designer.

The curves in Figure 4.9 are for three values of M; namely, MI =2, N =8. and M =32. The

best value Of Pmin is for 32-ary orthogonal signaling. Both M =8 and MI =32 are superior to

MI =2 for this example. However, there are examples in which MV =2 is better than larger

vdlues of M. That is. there are values of 6 that work better for the ratio threshold test with

majority logic decoding than for M -ary orthogonal signaling. This fact is illustrated in Figure

- 4.7. However, the values of & that work better for binary orthogonal signaling than for larger

values of M, do not give good performance for any of the signaling schemes.
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Figu~re 4.7. Probability of error pb versus the threshold 0for L =3, E, ,V ,=IlS.OdB.
E, /.V: =9.OdB. p=0.3. and At =2. S. 32. for the ratio threshold Les" With Ml -ary
orthogonal signaling
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Figure 4.10 gives curves for the ratio threshold test with 32-ary orthogonal signaling, and

curves for optimum combining, for diversity levels 3 and 5. The value of pm,, for the ratio

* threshold test may be close to the value of P' (and pmi) for optimum combining, but the signal

to noise ratio requirement for large values of p is as much as 5dB more for the suboptimal

scheme. In spite of this larger requirement in signal to noise ratio. we conclude that the ratio

threshold test for M -ary orthogonal signaling (including M =2 and the majority logic decoding

scheme) is a good technique for systems without side information in the presence of partial-

* band interference. The narrowband interference rejection capability can be nearly as good as it

is for systems with perfect side information.

"Ma
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.Optimum combining
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U. Figure 4.10. Bit energy to noise density ratio versus interference duty factor for 9=1.3.
p, =0. 1. and Eb IN 0-~ 18dB for the ratio threshold test for 32-ary orthogonal sig-
naling versus optimum combining for L =3 and L =5
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CHAPTER 5

NONSELECTIVE FADING CHANNELS

In addition to partial-band interference, the communication channel may exhibit fading.

In this chapter. we investigate the performance of the diversity combining schemes proposed in

Chapter 4 for channels with partial-band interference and nonselective Rician fading.

5.1 Channel Model

In our model, we assume that the diversity receptions fade independently. In making this

assumption for a system that uses frequency diversity, we are implying that the fading channel

is characterized by frequency-selective fading. The correlation bandwidth of a frequency-

selective fading channel is a parameter which describes how far apart two frequencies should

be for the fading processes on these frequencies to be uncorrelated [25]. In an FH system. it is ,e

possible that the smallest spacing between adjacent frequency slots will not be be greater than

: the correlation bandwidth of the fading channel. But, it is not likely that the diversity . -

"" transmissions for the same symbol will be sent over adjacent frequency slots. In fact. we may

wish to design the hopping pattern to avoid this. Thus. by assuming that the diversity recep-

*. tions fade independently, we are assuming that the smallest spacing between the frequency

slots used by the diversity transmissions of the same symbol is larger than the correlation

* bandwidth of the channel.

We also assume that the fading is nonselective on each diversity reception. This assump-

tion is valid as long as the bandwidth used by a given diversity transmission is much smaller

than the correlation bandwidth of the fading channel. Thus, the wideband channel of the FH

system is modeled as a group of independent narrowband channels, each with nonselective fad-

ing. We consider nonselective Rician fading.

For the channel with Rician fading and partial-band interference, we can describe each

diversity reception as a signal with four components. Two components of the diversity

. ,%; .' .' ...' .".. '- '-. -.' .''."".,,.'. .,,.-.",.' -' ," -"". "- "" "'-- "-"' " "-"" "" ""x '. ","%'J."". ",','--.." ," - " * #,, ".P

.......................................I =. @, ...............................
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reception are different versions of the diversity transmission: a non-faded version and a

U Rayleigh-faded version. The sum of these two components can be thought of as one Rician

faded component. The fading attenuates the signal amplitude with a Rician distributed random

* variable [15]. The third component of the diversity reception is due to the Gaussian partial-

band interference. Finally, the fourth component of the diversity reception is additive white

Gaussian noise.

i •mThe density function for the amplitude of the received signal on a Rician fading channel is

( ) a a 2 "] ' 
2  

I a b
f (a) yexp{--j2 ob2  -, a >0. (5.1)

The quantity b is the signal strength of the non-faded or specular component, and 20.2 is the

mean-squared value of the signal strength of the Rayleigh-faded or scatter component. Thus.

the mean-squared signal strength of the sum of the two components is b 2+20T2. The ratio

2.-20.'/b2 is the ratio of the mean-squared value of the signal strength of the scatter corn-

ponent to the signal strength of the specular component. For -y=oo, the channel model is a
I. " -

* Rayleigh fading channel. For y-=0. there is no fading (only a constant attenuation equal to b)

- [26]-[281].

We use the performance measures described in Chapter 1 and used throughout Chapters

. 2-4. We define pmin to be the largest number such that a given error probability can be

achieved in the presence of Gaussian quiescent noise. fading, and Gaussian partial-band

-- interference with any duty factor less than this number. This parameter is useful in describing

the system's narrowband interference rejection capability. We are also interested in the max-

imum signal to noise ratio required to achieve a desired error probability over tie entire range

of interference duty factors.

r 5.2 Clipped Linear Combining

As emphasized in Chapter 1. knowledge of the signal output voltage is required in order

to effectively employ clipped linear combining. For a frequency-hop system, the signal output

I

..................................................... .
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voltage may vary significantly from one frequency to the next because of different propagation

- characteristics of the communication channel at different frequencies. On a fading channel. the

signal strength of any given diversity reception may vary significantly from the root-mean-

* squared signal strength. Thus. it may be difficult to establish the clipping level for frequency-

* hop communications over fading channels.

In a fading environment, effective communication makes use of the diversity receptions

that have strong signal. However, a clipper tends to limit the diversity receptions that have

* strong signal in an attempt to limit the diversity receptions with partial-band interference.

* Thus. clipped linear combining is not useful for communications over fading channels.

The diversity combining schemes that use the ratio threshold test do not require the esti-

* mation of the signal strength. The threshold involved in the ratio threshold test is independent

of the received signal output voltage, and the measure of the quality of a given diversity recep-

tion depends only on that diversity reception. Also. diversity receptions with strong signal are

* not likely to be rejected by the ratio threshold test. In the remainder of this chapter. we inves-

tigate the performance of the diversity combining schemes which use the ratio threshold test

with diversity for FH systems subject to fading and partial-band interference.

5.3 The Ratio Threshold Test with Diversity Combining

First, we derive the probability of error for the system employing the ratio threshold test

with the variation on linear combining. The analysis is for a system with binary orthogonal

- signaling. The probability of error has the same form as in Chapter 4. but most of the quanti-

ties must be modified to take into account the effects of fading. The densities f 1(x) and

* f -v (x) which do not depend on v, or vy. remain the same.

Let r? denote the average received signal to noise ratio given that interference is present.

2E6 2=b r Eb-For a Rician fading channel. r7=(b 2+2o-2 ) e11( +2r) ad+
2 IV, NO-

I L02 First, we find the quantities pc and p,. By replacing v, by av;,

The r? 
.. . .
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in (4.2) and (4.3). and then averaging a with respect to the density in (5.1). we obtain

gl02(92+1) r? -_______
"-"PC =  -exp{- (5.2

F2 7 2+(1 +02)(-y2+1) / 2 +(1+02)(21) (5.2)

F.'

and

2+1 rJ02
Pe -1 ) exp- (5.3)

="?/2
2 0 2+(1+02)( "2 +) rjy20 2 +(1+0 2 )(? 2 +1)

Given that interference is absent. the average received signal to noise ratio is 2- 2 1o2Mr- s-N.L

The probabilities p, and p., are found by replacing r, by rFv in (5.2) and (5.3).

Next. we find the density function for Z =R o. 1 -R .1 .the difference between the envelope

detector outputs. We need to find the conditional density for Z given that R 0.1 > R 1. 10.the

conditional density for Z given that R1. > R0, 0. and the conditional density for Z given that

0-' < R 0, 1R 1.1 <0. To find these conditional densities, we need to know the density for R o. 1a
for a Rician fading channel. Suppose that interference is present on the diversity reception and

that the symbol 0 is sent. Then the conditional density function for the envelope detector out-

put corresponding to symbol 0 is

S(x)= xexp{-x2+ 2  ea a 2(v, 2 0.2 +1)2(x x 20.2- x}oxv Y (.)da. (5.4)."

* The definite integral in (5.4) can be solved analytically [29]. so that f 10 (x) may be written as

(x x (y2+1) x 2 (Y+1)+2r, xr, ,/2(+1)
rfy12 +y 2 +i exp -2(ri.y 2 +, 2 +1) 0 r ? 2 +,y2+l (5.5)

I P.

The conditional density for R , 1 given that interference is absent, f -v (x). is found by replac-

ing rr by r.v in (5.5). The quantities p,. p,. and f U (x) presented in (5.2). (5.3). and (5.5).

rare substituted into (4.9). (4.10). and (4.11) to find the conditional densities for Z given that

interference is present. The quantities p,. p ,. and f i)(x ) are substituted into (4.9). (4.10).

and (4.11) to find the conditional densities for Z given that interference is absent. The

C .7
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resulting conditional densities are used to solve (4.6). except for the term P (e: 0. 0). The vari-

ation on linear combining described in Section 4.3 is used for the situation in which all of the

diversity receptions are rejected. The conditional error probability P (e 0. 0) is computed for

this situation.

We compute the conditional error probability given that all of the diversity receptions are

rejected by the ratio threshold test. Recall that for the I -th diversity reception. T is equal to
*h.

S. The diversity reception with the maximum value of l' or iz -" (i. e.. max(max(r t . '"l-)))

is used to decide which bit is sent for this situation. The density and distribution functions for

71 for a diversity reception with interference and fading is found by replacing v, by av in the -

density and distribution functions of (4.14a) and (4.14b), and then averaging with respect to

the density in (5.1). For a diversity reception with Rician fading and interference, the condi-

tional density and distribution functions are

r? y2+ 2+1 r,2(,y2+1), rt 2
ot. 4f () 2t (,y+ i1 + 2+ + rIl+~ exp-TI.r(5.6a

[d (t )]2 [d (t )]3 d t7) 5.a

and
"K

•F (t.,2+ x._ ~ (5.6b)
:-.t

-'Y expl-

where d (t )=r? 2r 2 +(i+t 2 )(y 2 +I). The conditional density and distribution functions given I

that interference is absent, f r (U) and F r (t). are found by substituting r, by r.v in (5.6).

* The functions in (5.6). as well as f ' (t) and F N (t), are substituted into (4.16) to find the pro-

* bability of error given that all of the diversity receptions are rejected.

..

The probability of error for the ratio threshold test with the variation on majority logic

* decoding is found by using the derivations provided in Sections 4.2 and 4.3. and the quantities

*- derived in the preceding paragraphs of this section. That is. the expressions in (5.2)-(5.3).

(5.6), and the quantities corresponding to diversity receptions with interference absent are sub-

£r

, , .. .. .. . .. - * . . . -,. ,9 . . .... . . .
~~~~~~~. . . . . . . . ....... .. ,,•.....-.,.....,....-.....:.."-...">""-,- "
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stituted in the appropriate places in the derivation presented in Sections 4.2 and 4.3.

S.4 Numerical Results

Figures 5.1 and 5.2 show the sensitivity of the probability of error to the threshold 0 for

the diversity combining schemes discussed in Section 5.3. The curves in Figure 5.1 correspond

to the ratio threshold test with the variation on linear combining. Recall that a value of 0=4

works well for the ratio threshold test with linear combining in the presence of partial-band

L. interference ( y 2 =0). The curves of Figure 5.1 illustrate that for p=0. 1. a large value of 0 (e.

g., 0=6) works well for a channel with both partial-band interference and fading. However.

the error probability is not sensitive to 0.

The curves in Figure 5.2 correspond to the ratio threshold test with the variation on

majority logic decoding. Note that for Rayleigh fading. a value of 0 near 6 gives the minimum

value of Pb in the curves shown. For Rician fading, smaller values of 6 are better for small p.

However, the error probability is not very sensitive to 0. We use 0=6 for both linear combin-

ing and majority logic decoding in the examples that follow.

Figures 5.3 through 5.5 illustrate the performance of the ratio threshold test with the

variation on linear combining for partial-band interference and fading. Note that the curv.e for

L =1 is not plotted in Figure 5.3. This is because for ~3~18.0dB. a bit error probability of

Pb =0.01 cannot be achieved no matter how large $'~ is. However. Pb, =0.01 is achievable for

diversity levels 2 and 3. An average received signal to quiescent noise ratio of 18dB is actually

lower than the average received signal to interference ratio required in the example of Figure

5.3 for most values of p. Thus, the assumption that the quiescent noise level is much less than

the interference level is violated in this example. For the examples in Figures 5.4 and 5.5. we

allow a larger average received signal to quiescent noise ratio.

Recall that for the systern' with partial-band interference and no fading, diversity level 3

does not show improvement over diversity level 2 for the examples discussed in Chapter 4. For

the ratio threshold test with the variation on linear combining with partial-band interference
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Figu~re 5.2. Probability of error p versus the threshold 9 for small interference duty factors.
L =3.,0%2,=18.OdB. and 0.1212.OdB for the ratio threshold test with the variation
on majority logic decoding
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and fading. increasing the diversity level above L =2 leads to improvement in pfi. However,

increasing the diversity level also causes the signal to noise ratio requirement for large interfer-

ence duty factors to increase. This increase is less than 1.5dB in the examples shown.

Figures 5.6 through 5.8 give the performance of the ratio threshold test with the variation

on majority logic decoding for partial-band interference and fading. In Figure 5.6. pm is

smaller for diversity level 4 than it is for diversity level 3. The performance is poor for all

L diversity levels because the signal to quiescent noise ratio is too small. Large improvement in

p~i is seen in Figures 5.7 and 5.8. as the diversity level increases from 1 to 4. The increase in

the signal to noise ratio requirement for large interference duty f actors is less than 1.5dB for

each increment in the diversity level.

Note that the curves for diversity level 1 are the same in Figures 5.6 through 5.8 as they

are in the corresponding examples in Figures 5.3 through 5.5. That is. for L =1. the schemes

£ that use the variation are all the same and. in fact, are independent of 0. The decision is always

based on one diversity reception whether that diversity reception is accepted or rejected by the

ratio threshold test.

Also, note that for Rayleigh fading (-/=00). the maximum signal to noise ratio required

over the range of interference duty factors occurs at p=1. This is demonstrated in Figures 5.3.

5.4. 5.6. and 5.7. That is. full band interference is the worst-case partial-band intei-ference.
ow

This fact is also observed in [10] for the ratio threshold test with majority logic decoding (no

variation), and is demonstrated in other work, such as [30].

Figure 5.9 presents a comparison between the variation on linear combining and the varia-

tion on majority logic decoding for Rayleigh fading. Figure 5.9 also includes the perform~ance of

square-lawA, combining for a receiver with perfect side information (shown as the dotted curve).

which, in Rayleigh fading. is the optimum combining technique. Majority logic decoding is

closer to square-law combining at small p. and linear combining is closer to square-law combin-

ing at large p. Majority logic decoding has a significantly better value of pmin than linear

%



. .

94

-: 2.4-":

24 -

L =2

l L =3.,

L =4

.2.

' 16-

-o i"-

- 8
OI-

. ..1

000 0.2 .4 0.6 0.8 1 .0
Interference duty factor. p

Figure 5.6. Average received bit energy to noise density ratio versus interference duty factor -
for pb =0.01. 2.=18.0dB. Y2=a. and diversity levels 2 through 4 for the ratio
threshold test with the variation on majority logic decoding with 0=6

i . .-.- -,e ,, , , -.,uC C -ai ~i C~i .. . -. . . . . .. . . i| i



95

L a=e
20

~16-

4L.=

P. z6

~~ 12



96

X,

S16

> L 2-

4L.=

Interference duty factor. p

Figure .5.8 . Average received bit energy to noise density ratio versus interference duty facztor%
for pb =0.01. 132=30.0dB. _y2 =O.1. and diversity levels 1 through 4 for the ratio
threshold test with the variation on majority logic decoding with 9=6



97.

-- linear combining
-- - - majority logic decoding
....... square-law combining. perfect side information

..-

" '16 -- -..

-

for L- =3 pb =001 0 3.d.y= ad96frterto hehl etwt

, information• ~l

. _ .- . . . . . . .4%

2.-

4.°

I I°

. Interference duty factor. p

_Figure 5.9. Average received bit energy to noise density ratio versus interference duty factor
for L =3. p =0.01. f.3.=30.0dB. y:=oo, and 0=6 for the ratio threshold test with ,

,.?, the variation on linear combining versus the ratio threshold test with the varia- %

". tion on majority logic decoding versus square-law combining with perfect side

information

I°



98

combining (more than 0.1 larger in this example). without much tradeoff in the signal to noise

ratio requirement at large p. (The difference in the signal to noise ratio requirement is about

0.5dB in this example.) Thus. the ratio threshold test with the variation on majority logic

decoding can be considered better, or more -robust.- than the scheme with linear combining.

5.5 The Ratio Threshold Test for M-ary Orthogonal Signaling

The procedure for calculating the probability of error for the scheme with the ratio thres-

hold test and M -ary orthogonal signaling was presented in Section 4.4. The probability of er-

ror for this scheme in the presence of partial-band interference and fading is found by using the

same procedure. The only quantities that need to be averaged with respect to the density in

(5.1) are the conditional density function ior R 0.1 given that interference is present. namely.

f f 1 (x). and the conditional density function for R0.1 given thzt interference is absent, riamely.

f ' (x). But, the density f 1 (x) is already presented in (5.5). and f -v (x) is found by replac-

ing F by I> in (5.5). These densities are substituted into the appropriate places in Section 4.4

* to calculate the probability of error for the ratio threshold test with M -ary or-hogonal signal-

.. iing.

Figure 5.10 presents a comparison of the performance of the ratio threshold test and that

of the optimum combining technique for 32-ary orthogonal signaling and Rayleigh fading. The

"- optimum technique is square-law combining for a receiver with perfect side information. The

value of p,,, for the ratio threshold test is about 0.5 less than that for the square-law combin-

ing. Thus, the narrowband interference rejection of the ratio threshold test is good. As much

as 55 percent of the frequency band must have interference for the symbol error probability to

be larger than 0.1 for diveisity level 5. For large p. the signal to noise ratio requirement for

the -atio threshold test is about 2.5dB more than it is for square-law combining. However.

note that these numerical results are for the scheme that makes a random decision for the situa-

tion in which all the diversity receptions are rejected. If the variation on this scheme is em-

ployed, the signal to noise ratio requirement at large p will be reduced.

- . . . . -.•• • • . o o. . o. • . o .• .... .•. .•.. . . .•... . . .... . . .-.. . . .•.. . . . . . . . . .-.. . . -. 
° °

" . . ." ." ,° °'
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Figure 5.11 shows the performance of the ratio threshold test for a system with 32-ary

*orthogonal signaling and diversity levels 3. 5. and 7. for Rician fading with -y2=0.1. The value

of Pmin increases with the diversity level, and it is 0.65 for L 7. The curves in this figure

demonstrate the good narrowband interference rejection capability of FH communication sys-

tems that employ diversity transmission and the ratio threshold test.

t .°

. .". ..

- . . . .
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CH.APTER 6

CONCLUSIONS

In this thesis. we have analyzed several diversity combining schemes for frequency-hop

communications in the presence of partial-band interference and fading. Each diversity comn-

* bining technique has been evaluated on its narrowband interference rejection capability and on r..

* its signal to noise ratio requirement over all values of interference duty factors.

We have calculated the exact probability of error for the optimum diversity combining

* scheme for a receiver in which perf ect side information is available. Several suboptimum

diversity combining schemes for receivers with perfect side information have been compared to

the optimum combining technique. and it has been found that all of these schemes perform

nearly the same. It is the availability of the perfect side information that allows all of these

schemes to perform well in the presence of partial-band interference.

Several diversity combining schemes have been analyzed for receivers without side infor-

* mation. Clipped linear combining was shown to be effective against narrowband interference.

It can perform nearly as well as a receiver with perfect side information. A sensitivity

analysis of clipped linear combining has demonstrated that its performance may be unpredict-

able if the there are large deviations in the signal output voltage (e. g.. more than 3dB).

The ratio threshold test. used in conjunction with diversity combining, has been shown to

be another effective technique for partial-band interference. The ratio threshold test with

* majority logic decoding and with M -ary orthogonal signaling work well in terms of nar--

rowband interference rejection. However, in some of the examples shown, the signal to noise

ratio requirement is significantly higher for these schemes than it is for the optimum combining

scheme. Although the ratio threshold test with linear combining provides some narrowband

interference rejection. it does not do so as effectively as the other combining techniques con-

sidered.

V %.
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The diversity combining schemes that employ the ratio threshold test have been analyzed

for partial-band interference and nonselective Rician fading. It has been shown that the ratio

threshold test with M -ary orthogonal signaling (including M =2 and majority logic decoding)

K provides good narrowband interference rejection. The signal to noise ratio requirement of this

scheme for large values of the interference duty factor is much higher (more than 3 dB) than

* the requirement for square-law combining with perfect side information. the optimum combin-

ing technique for Rayleigh fading. Although the ratio threshold test with diversity combining

does not achieve the optimum performance. it is an effective. as well as practical, scheme for

* use in FH systems subject to partial-band interference and fading.

There are many variations on the diversity combining techniques that use ratio statistics.

One technique that has not been discussed in this thesis is ratio statistic combining. In this

scheme. a ratio statistic is formed for each symbol on each diversity reception. The ratio statis-

tics are added. and the symbol with the largest sum is chosen. The analysis of this scheme and

of other variations on the ratio threshold test is a topic for further research.

Although some results have been given in this thesis for general (non-Gaussian) interfer-

ence. as well as for Gaussian partial-band interference, there are other models for the interfer-

ence that could be explored in future work. For example. models for multiple-access interfer-

ence could be studied as a class of partial-band interference. Also, the partial-band interference

-- could be modeled by a generalized Gaussian process [31]. Finally, for the analysis of communi-

* cations via fading channels, the partial-band interference could be modeled as a fading process.
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APPENDIX

MIETHODS USED TO VERIFY NUMMRCAL RESULTS

Most of the numerical results presented in this thesis required extensive numerical comn-

* putation. The purpose of this Appendix is to describe the tools we used in obtaining the data

* and how the programs used to compute the data were verified.

The computer programs were written in Fortran. The computations were done on Digital

Equipment Corporation VAX 11/780 computers. In addition. a Floating Point System's Array

* Processor (AP) with its scientific subroutines was employed. The subroutines on the AP that

were used include vector convolution, vector Simpson's integral, vector multiplication, and vec-

* tor multiplication by a scalar. The AP was very instrumental in saving computation time. In

fact. in many cases, there was a savings of computation time by a factor of 10 for programs

that used the AP when compared to programs that did not use the AP.-

Examples of curves that required the most computation time include the curves for the

ratio threshold test with the variation on linear combining in Figures 4.5. 5.3. and 5.5 for L =3.

The results in Table 2.2 corresponding to the optimum diversity combining technique for L =5.

also used extensive computation time. Other numerical results used less computation time.

To verify that the computer programs were correct, tests were run for special cases of the

problem for which results are found in the literature. In addition, special cases that could also

* be compared with other programs that were written independently, were also tested for agree-

ment between the programs. To explain in more detail how the numerical results were verified. a

we use as an example the program written for the ratio threshold test with majority logic in

the presence of Rician fading. The case with L =1. 0=1. and p=1. was checked against curves

given in (23] for various ),2 n . The case with 0=1. p=1 and ),2=0(or l/y=)was

checked against the curves in Figure 5.5 in (10] for L =2. 4. and 6. The program was tested

against the program for the ratio threshold test with majority logic decoding, no fading. for

...............................
L* 1%~
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2
" various values of p. 6. L. Eb IN. and EbIN O. by letting vy become small (e.g..

1/)'=1 .000.000).

As another example of how the numerical results were verified, consider the program

" written for clipped linear combining. The results obtained for large clipping levels (e.g..

C =703) were compared to the results obtained from the program that computes the perfor-

mance of the ratio threshold test with linear combining with 0I for binary orthogonal signal-

ing. Also. the results for large clipping levels were compared with the results from the pro-

gram for standard linear combining with no side information for M -ary orthogonal signaling.

.. These tests were performed for various diversity levels. The program was also checked against

the analytical example discussed in Section 3.3. for M =2 and L =2.

Similar methods were used to test all other programs that generate data for this thesis.

Although many of the numerical results presented for the values of the signal to noise ratio are

accurate to one hundredth of a dB. in general we claim that our results are accurate to one

tenth of a dB.

Io,

I-
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